Xiong Dapeng, Qiu Yunguang, Zhao Junfei, Zhou Yadi, Lee Dongjin, Gupta Shobhita, Torres Mateo, Lu Weiqiang, Liang Siqi, Kang Jin Joo, Eng Charis, Loscalzo Joseph, Cheng Feixiong, Yu Haiyuan
Department of Computational Biology, Cornell University, Ithaca, NY, USA.
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
Nat Biotechnol. 2024 Oct 24. doi: 10.1038/s41587-024-02428-4.
To assist the translation of genetic findings to disease pathobiology and therapeutics discovery, we present an ensemble deep learning framework, termed PIONEER (Protein-protein InteractiOn iNtErfacE pRediction), that predicts protein-binding partner-specific interfaces for all known protein interactions in humans and seven other common model organisms to generate comprehensive structurally informed protein interactomes. We demonstrate that PIONEER outperforms existing state-of-the-art methods and experimentally validate its predictions. We show that disease-associated mutations are enriched in PIONEER-predicted protein-protein interfaces and explore their impact on disease prognosis and drug responses. We identify 586 significant protein-protein interactions (PPIs) enriched with PIONEER-predicted interface somatic mutations (termed oncoPPIs) from analysis of approximately 11,000 whole exomes across 33 cancer types and show significant associations of oncoPPIs with patient survival and drug responses. PIONEER, implemented as both a web server platform and a software package, identifies functional consequences of disease-associated alleles and offers a deep learning tool for precision medicine at multiscale interactome network levels.
为了推动基因研究成果向疾病病理生物学和治疗方法发现的转化,我们提出了一种集成深度学习框架,称为PIONEER(蛋白质-蛋白质相互作用界面预测),它可以预测人类以及其他七种常见模式生物中所有已知蛋白质相互作用的蛋白质结合伴侣特异性界面,以生成全面的结构信息丰富的蛋白质相互作用组。我们证明PIONEER优于现有的最先进方法,并通过实验验证了其预测结果。我们表明,疾病相关突变在PIONEER预测的蛋白质-蛋白质界面中富集,并探讨了它们对疾病预后和药物反应的影响。通过对33种癌症类型的约11,000个全外显子组进行分析,我们确定了586种与PIONEER预测的界面体细胞突变富集的显著蛋白质-蛋白质相互作用(称为肿瘤PPIs),并表明肿瘤PPIs与患者生存率和药物反应存在显著关联。PIONEER以网络服务器平台和软件包的形式实现,可识别疾病相关等位基因的功能后果,并在多尺度相互作用组网络层面为精准医学提供深度学习工具。