Suppr超能文献

由 BtubAB 形成的四股迷你微管表现出动态不稳定性。

Four-stranded mini microtubules formed by BtubAB show dynamic instability.

机构信息

Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.

Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5950-E5958. doi: 10.1073/pnas.1705062114. Epub 2017 Jul 3.

Abstract

Microtubules, the dynamic, yet stiff hollow tubes built from αβ-tubulin protein heterodimers, are thought to be present only in eukaryotic cells. Here, we report a 3.6-Å helical reconstruction electron cryomicroscopy structure of four-stranded mini microtubules formed by bacterial tubulin-like BtubAB proteins. Despite their much smaller diameter, mini microtubules share many key structural features with eukaryotic microtubules, such as an M-loop, alternating subunits, and a seam that breaks overall helical symmetry. Using in vitro total internal reflection fluorescence microscopy, we show that bacterial mini microtubules treadmill and display dynamic instability, another hallmark of eukaryotic microtubules. The third protein in the gene cluster, BtubC, previously known as "bacterial kinesin light chain," binds along protofilaments every 8 nm, inhibits BtubAB mini microtubule catastrophe, and increases rescue. Our work reveals that some bacteria contain regulated and dynamic cytomotive microtubule systems that were once thought to be only useful in much larger and sophisticated eukaryotic cells.

摘要

微管是由αβ-微管蛋白异二聚体构成的动态刚性中空管,被认为仅存在于真核细胞中。在这里,我们报告了一个由细菌微管蛋白样 BtubAB 蛋白形成的四股小型微管的 3.6 Å 螺旋重建电子低温显微镜结构。尽管直径小得多,但小型微管与真核微管共享许多关键结构特征,例如 M 环、交替亚基和打破整体螺旋对称性的缝线。使用体外全内反射荧光显微镜,我们表明细菌小型微管会行走并显示动态不稳定性,这是真核微管的另一个标志。基因簇中的第三个蛋白 BtubC,以前被称为“细菌驱动蛋白轻链”,沿着原纤维每 8nm 结合一次,抑制 BtubAB 小型微管的崩解,并增加挽救。我们的工作表明,一些细菌含有受调控和动态的细胞运动微管系统,这些系统曾经被认为只在更大、更复杂的真核细胞中有用。

相似文献

1
Four-stranded mini microtubules formed by BtubAB show dynamic instability.
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):E5950-E5958. doi: 10.1073/pnas.1705062114. Epub 2017 Jul 3.
2
Bacterial kinesin light chain (Bklc) links the Btub cytoskeleton to membranes.
Sci Rep. 2017 Mar 30;7:45668. doi: 10.1038/srep45668.
3
Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton.
PLoS Biol. 2011 Dec;9(12):e1001213. doi: 10.1371/journal.pbio.1001213. Epub 2011 Dec 6.
5
A microtubule RELION-based pipeline for cryo-EM image processing.
J Struct Biol. 2020 Jan 1;209(1):107402. doi: 10.1016/j.jsb.2019.10.004. Epub 2019 Oct 11.
6
Direct visualization of the microtubule lattice seam both in vitro and in vivo.
J Cell Biol. 1994 Dec;127(6 Pt 2):1965-71. doi: 10.1083/jcb.127.6.1965.
7
On and around microtubules: an overview.
Mol Biotechnol. 2009 Oct;43(2):177-91. doi: 10.1007/s12033-009-9193-5. Epub 2009 Jun 30.
8
Bacterial Tubulins: A Eukaryotic-Like Microtubule Cytoskeleton.
Trends Microbiol. 2017 Oct;25(10):782-784. doi: 10.1016/j.tim.2017.08.004. Epub 2017 Aug 28.
9
Characterization of Microtubule Lattice Heterogeneity by Segmented Subtomogram Averaging.
Bio Protoc. 2023 Jul 20;13(14):e4723. doi: 10.21769/BioProtoc.4723.
10
An electron microscopy journey in the study of microtubule structure and dynamics.
Protein Sci. 2015 Dec;24(12):1912-9. doi: 10.1002/pro.2808. Epub 2015 Oct 11.

引用本文的文献

1
Nanoparticle-assisted tubulin assembly is environment dependent.
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2403034121. doi: 10.1073/pnas.2403034121. Epub 2024 Jul 2.
3
Alternative Approaches to Understand Microtubule Cap Morphology and Function.
ACS Omega. 2023 Jan 13;8(4):3540-3550. doi: 10.1021/acsomega.2c06926. eCollection 2023 Jan 31.
4
Early origin and evolution of the FtsZ/tubulin protein family.
Front Microbiol. 2023 Jan 10;13:1100249. doi: 10.3389/fmicb.2022.1100249. eCollection 2022.
5
Shaping Liposomes by Cell-Free Expressed Bacterial Microtubules.
ACS Synth Biol. 2021 Oct 15;10(10):2447-2455. doi: 10.1021/acssynbio.1c00278. Epub 2021 Sep 29.
6
Protein folding and surface interaction phase diagrams in vitro and in cells.
FEBS Lett. 2021 May;595(9):1267-1274. doi: 10.1002/1873-3468.14058. Epub 2021 Mar 27.
7
Collective effects of XMAP215, EB1, CLASP2, and MCAK lead to robust microtubule treadmilling.
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12847-12855. doi: 10.1073/pnas.2003191117. Epub 2020 May 26.
8
Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria).
Protoplasma. 2020 May;257(3):621-753. doi: 10.1007/s00709-019-01442-7. Epub 2020 Jan 3.
9
Cryo-EM structure of the MinCD copolymeric filament from Pseudomonas aeruginosa at 3.1 Å resolution.
FEBS Lett. 2019 Aug;593(15):1915-1926. doi: 10.1002/1873-3468.13471. Epub 2019 Jun 14.
10
Rescuing microtubules from the brink of catastrophe: CLASPs lead the way.
Curr Opin Cell Biol. 2019 Feb;56:94-101. doi: 10.1016/j.ceb.2018.10.011. Epub 2018 Nov 16.

本文引用的文献

1
Bacterial kinesin light chain (Bklc) links the Btub cytoskeleton to membranes.
Sci Rep. 2017 Mar 30;7:45668. doi: 10.1038/srep45668.
2
Helical reconstruction in RELION.
J Struct Biol. 2017 Jun;198(3):163-176. doi: 10.1016/j.jsb.2017.02.003. Epub 2017 Feb 11.
3
Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION.
Nat Protoc. 2016 Nov;11(11):2054-65. doi: 10.1038/nprot.2016.124. Epub 2016 Sep 29.
4
Gctf: Real-time CTF determination and correction.
J Struct Biol. 2016 Jan;193(1):1-12. doi: 10.1016/j.jsb.2015.11.003. Epub 2015 Nov 19.
5
Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging.
Structure. 2015 Sep 1;23(9):1743-1753. doi: 10.1016/j.str.2015.06.026. Epub 2015 Aug 6.
6
Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.
Cell. 2015 Aug 13;162(4):849-59. doi: 10.1016/j.cell.2015.07.012. Epub 2015 Jul 30.
7
MamA as a Model Protein for Structure-Based Insight into the Evolutionary Origins of Magnetotactic Bacteria.
PLoS One. 2015 Jun 26;10(6):e0130394. doi: 10.1371/journal.pone.0130394. eCollection 2015.
8
Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions.
Acta Crystallogr D Biol Crystallogr. 2015 Jan 1;71(Pt 1):136-53. doi: 10.1107/S1399004714021683.
9
MAIN software for density averaging, model building, structure refinement and validation.
Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1342-57. doi: 10.1107/S0907444913008408. Epub 2013 Jun 13.
10
Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM.
Nat Methods. 2013 Jun;10(6):584-90. doi: 10.1038/nmeth.2472. Epub 2013 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验