Skóra Tomasz, Wu Jiangbo, Beckett Daniel, Xue Weizhi, Voth Gregory A, Bidone Tamara C
Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, United States.
Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Frank Institute, University of Chicago, Chicago, Illinois 60637, United States.
bioRxiv. 2025 May 26:2025.05.23.655844. doi: 10.1101/2025.05.23.655844.
Microtubules are essential cytoskeletal components with a broad range of functions in which the structure and dynamics of their plus-end tips play critical roles. Existing mechanistic models explain the tips curving dynamics in different ways: the allosteric model suggests that GTP hydrolysis induces conformational changes in tubulin subunits that destabilize the lattice, leading to protofilament curving and depolymerization, while the lattice model posits that GTP hydrolysis directly destabilizes the microtubule lattice. However, the effect of GTP hydrolysis on the curving dynamics of microtubule tips remains incompletely understood. In this study, we employed a multiscale modeling approach, combining all-atom molecular dynamics simulations with Brownian dynamics simulations, to investigate the relaxation of microtubule plus-end tips into curved configurations. Our results show that both GDP- and GTP-bound tips exhibit an outward bending of protofilaments into curved, ram's horn-like structures, characterized by a linear relationship between curvature and distance from the plus-end tip. These observations align with experimental cryo-ET images of microtubule plus-end tips in different nucleotide states. Collectively, our findings suggest that the outward bending of protofilaments at the plus-end tip is an intrinsic feature of microtubules, independent of the nucleotide state.
微管是重要的细胞骨架成分,具有广泛的功能,其中其正端末端的结构和动力学起着关键作用。现有的机制模型以不同方式解释末端弯曲动力学:变构模型表明,GTP水解诱导微管蛋白亚基的构象变化,使晶格不稳定,导致原纤维弯曲和解聚,而晶格模型则认为GTP水解直接使微管晶格不稳定。然而,GTP水解对微管末端弯曲动力学的影响仍未完全理解。在本研究中,我们采用了多尺度建模方法,将全原子分子动力学模拟与布朗动力学模拟相结合,以研究微管正端末端松弛成弯曲构型的过程。我们的结果表明,结合GDP和GTP的末端均表现出原纤维向外弯曲成弯曲的羊角状结构,其特征是曲率与距正端末端的距离之间存在线性关系。这些观察结果与处于不同核苷酸状态的微管正端末端的实验低温电子断层扫描图像一致。总体而言,我们的研究结果表明,正端末端原纤维的向外弯曲是微管的固有特征,与核苷酸状态无关。