Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India.
Rajkiya Engineering College, Sonbhadra, Uttar Pradesh, India.
BMC Med Inform Decis Mak. 2023 Apr 26;23(1):78. doi: 10.1186/s12911-023-02174-8.
Magnetic resonance image (MRI) brain tumor segmentation is crucial and important in the medical field, which can help in diagnosis and prognosis, overall growth predictions, Tumor density measures, and care plans needed for patients. The difficulty in segmenting brain Tumors is primarily because of the wide range of structures, shapes, frequency, position, and visual appeal of Tumors, like intensity, contrast, and visual variation. With recent advancements in Deep Neural Networks (DNN) for image classification tasks, intelligent medical image segmentation is an exciting direction for Brain Tumor research. DNN requires a lot of time & processing capabilities to train because of only some gradient diffusion difficulty and its complication.
To overcome the gradient issue of DNN, this research work provides an efficient method for brain Tumor segmentation based on the Improved Residual Network (ResNet). Existing ResNet can be improved by maintaining the details of all the available connection links or by improving projection shortcuts. These details are fed to later phases, due to which improved ResNet achieves higher precision and can speed up the learning process.
The proposed improved Resnet address all three main components of existing ResNet: the flow of information through the network layers, the residual building block, and the projection shortcut. This approach minimizes computational costs and speeds up the process.
An experimental analysis of the BRATS 2020 MRI sample data reveals that the proposed methodology achieves competitive performance over the traditional methods like CNN and Fully Convolution Neural Network (FCN) in more than 10% improved accuracy, recall, and f-measure.
磁共振成像(MRI)脑肿瘤分割在医学领域至关重要,可以帮助诊断和预后、总体生长预测、肿瘤密度测量以及患者所需的护理计划。分割脑肿瘤的困难主要在于肿瘤的结构、形状、频率、位置和视觉吸引力范围广泛,例如强度、对比度和视觉变化。随着深度学习神经网络(DNN)在图像分类任务中的最新进展,智能医学图像分割是脑肿瘤研究的一个令人兴奋的方向。DNN 需要大量的时间和处理能力进行训练,因为仅存在一些梯度扩散问题及其复杂性。
为了克服 DNN 的梯度问题,本研究工作提供了一种基于改进残差网络(ResNet)的脑肿瘤分割的有效方法。现有的 ResNet 可以通过保留所有可用连接链路的细节或通过改进投影快捷方式来改进。这些细节被馈送到后续阶段,因此改进的 ResNet 可以实现更高的精度并加速学习过程。
所提出的改进 Resnet 解决了现有 ResNet 的三个主要组成部分:信息在网络层中的流动、残差构建块和投影快捷方式。这种方法可以最小化计算成本并加速处理过程。
对 BRATS 2020 MRI 样本数据的实验分析表明,所提出的方法在超过 10%的准确性、召回率和 f-measure 方面优于传统方法(如 CNN 和全卷积神经网络(FCN)),具有竞争力。