Yalcin Hulya, Valenta Ines, Zhao Min, Tahari Abdel, Lu Dai-Yin, Higuchi Takahiro, Yalcin Fatih, Kucukler Nagehan, Soleimanifard Yalda, Zhou Yun, Pomper Martin G, Abraham Theodore P, Tsui Ben, Lodge Martin A, Schindler Thomas H, Roselle Abraham M
Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins School of Medicine, Baltimore, MD, USA.
Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.
J Nucl Cardiol. 2019 Aug;26(4):1243-1253. doi: 10.1007/s12350-017-1155-x. Epub 2018 Jan 22.
Quantification of myocardial blood flow (MBF) by positron emission tomography (PET) is important for investigation of angina in hypertrophic cardiomyopathy (HCM). Several software programs exist for MBF quantification, but they have been mostly evaluated in patients (with normal cardiac geometry), referred for evaluation of coronary artery disease (CAD). Software performance has not been evaluated in HCM patients who frequently have hyperdynamic LV function, LV outflow tract (LVOT) obstruction, small LV cavity size, and variation in the degree/location of LV hypertrophy.
We compared results of MBF obtained using PMod, which permits manual segmentation, to those obtained by FDA-approved QPET software which has an automated segmentation algorithm.
N-ammonia PET perfusion data were acquired in list mode at rest and during pharmacologic vasodilation, in 76 HCM patients and 10 non-HCM patients referred for evaluation of CAD (CAD group.) Data were resampled to create static, ECG-gated and 36-frame-dynamic images. Myocardial flow reserve (MFR) and MBF (in ml/min/g) were calculated using QPET and PMod softwares.
All HCM patients had asymmetric septal hypertrophy, and 50% had evidence of LVOT obstruction, whereas non-HCM patients (CAD group) had normal wall thickness and ejection fraction. PMod yielded significantly higher values for global and regional stress-MBF and MFR than for QPET in HCM. Reasonably fair correlation was observed for global rest-MBF, stress-MBF, and MFR using these two softwares (rest-MBF: r = 0.78; stress-MBF: r = 0.66.; MFR: r = 0.7) in HCM patients. Agreement between global MBF and MFR values improved when HCM patients with high spillover fractions (> 0.65) were excluded from the analysis (rest-MBF: r = 0.84; stress-MBF: r = 0.72; MFR: r = 0.8.) Regionally, the highest agreement between PMod and QPET was observed in the LAD territory (rest-MBF: r = 0.82, Stress-MBF: r = 0.68) where spillover fraction was the lowest. Unlike HCM patients, the non-HCM patients (CAD group) demonstrated excellent agreement in MBF/MFR values, obtained by the two softwares, when patients with high spillover fractions were excluded (rest-MBF: r = 0.95; stress-MBF: r = 0.92; MFR: r = 0.95).
Anatomic characteristics specific to HCM hearts contribute to lower correlations between MBF/MFR values obtained by PMod and QPET, compared with non-HCM patients. These differences indicate that PMod and QPET cannot be used interchangeably for MBF/MFR analyses in HCM patients.
通过正电子发射断层扫描(PET)对心肌血流量(MBF)进行定量分析对于肥厚型心肌病(HCM)患者心绞痛的研究具有重要意义。现有多种用于MBF定量分析的软件程序,但大多是在因冠状动脉疾病(CAD)而接受评估的(心脏几何结构正常的)患者中进行评估的。尚未在经常出现左心室功能亢进、左心室流出道(LVOT)梗阻、左心室腔较小以及左心室肥厚程度/部位存在差异的HCM患者中对软件性能进行评估。
我们比较了使用允许手动分割的PMod软件获得的MBF结果与通过具有自动分割算法的FDA批准的QPET软件获得的结果。
对76例HCM患者和10例因CAD评估而转诊的非HCM患者(CAD组)在静息状态和药物性血管扩张期间以列表模式采集N-氨PET灌注数据。对数据进行重新采样以创建静态、心电图门控和36帧动态图像。使用QPET和PMod软件计算心肌血流储备(MFR)和MBF(以ml/min/g为单位)。
所有HCM患者均有不对称性室间隔肥厚,50%有LVOT梗阻的证据,而非HCM患者(CAD组)的壁厚和射血分数正常。在HCM患者中,PMod得出的整体和局部应激-MBF及MFR值显著高于QPET。使用这两种软件在HCM患者中对整体静息-MBF、应激-MBF和MFR观察到合理的中等相关性(静息-MBF:r = 0.78;应激-MBF:r = 0.66;MFR:r = 0.7)。当将溢出分数>0.65的HCM患者排除在分析之外时,整体MBF和MFR值之间的一致性得到改善(静息-MBF:r = 0.84;应激-MBF:r = 0.72;MFR:r = 0.8)。在局部,PMod和QPET之间一致性最高的是在左前降支区域(静息-MBF:r = 0.82,应激-MBF:r = 0.68),该区域溢出分数最低。与HCM患者不同,当排除溢出分数高的患者后,非HCM患者(CAD组)通过两种软件获得的MBF/MFR值显示出极好的一致性(静息-MBF:r = 0.95;应激-MBF:r = 0.92;MFR:r = 0.95)。
与非HCM患者相比,HCM心脏特有的解剖特征导致PMod和QPET获得的MBF/MFR值之间的相关性较低。这些差异表明在HCM患者中,PMod和QPET不能互换用于MBF/MFR分析。