Suppr超能文献

肠道微生物群与 IGF-1

Gut Microbiota and IGF-1.

机构信息

Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, 60 Fenwood Road, BTM 6022, Boston, MA, 02115, USA.

Harvard Medical School, Boston, MA, 02115, USA.

出版信息

Calcif Tissue Int. 2018 Apr;102(4):406-414. doi: 10.1007/s00223-018-0395-3. Epub 2018 Jan 23.

Abstract

Microbiota and their hosts have coevolved for millions of years. Microbiota are not only critical for optimal development of the host under normal physiological growth, but also important to ensure proper host development during nutrient scarcity or disease conditions. A large body of research has begun to detail the mechanism(s) of how microbiota cooperate with the host to maintain optimal health status. One crucial host pathway recently demonstrated to be modulated by microbiota is that of the growth factor insulin like growth factor 1 (IGF-1). Gut microbiota are capable of dynamically modulating circulating IGF-1 in the host, with the majority of data suggesting that microbiota induce host IGF-1 synthesis to influence growth. Microbiota-derived metabolites such as short chain fatty acids are sufficient to induce IGF-1. Whether microbiota induction of IGF-1 is mediated by the difference in growth hormone expression or the host sensitivity to growth hormone is still under investigation. This review summarizes the current data detailing the interaction between gut microbiota, IGF-1 and host development.

摘要

微生物组及其宿主已经共同进化了数百万年。微生物组不仅对宿主在正常生理生长下的最佳发育至关重要,而且在营养匮乏或疾病条件下,确保宿主的正常发育也很重要。大量的研究开始详细阐述微生物组与宿主合作维持最佳健康状态的机制。最近发现的一个关键宿主途径是生长因子胰岛素样生长因子 1(IGF-1)。肠道微生物组能够在宿主中动态调节循环中的 IGF-1,大多数数据表明,微生物组诱导宿主 IGF-1 合成以影响生长。微生物组衍生的代谢物,如短链脂肪酸,足以诱导 IGF-1。微生物组诱导 IGF-1 是否是通过生长激素表达的差异或宿主对生长激素的敏感性来介导的,仍在研究中。本综述总结了目前详细描述肠道微生物组、IGF-1 和宿主发育之间相互作用的研究数据。

相似文献

1
Gut Microbiota and IGF-1.
Calcif Tissue Int. 2018 Apr;102(4):406-414. doi: 10.1007/s00223-018-0395-3. Epub 2018 Jan 23.
2
Gut microbiota induce IGF-1 and promote bone formation and growth.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7554-E7563. doi: 10.1073/pnas.1607235113. Epub 2016 Nov 7.
3
Crosstalk between the growth hormone/insulin-like growth factor-1 axis and the gut microbiome: A new frontier for microbial endocrinology.
Growth Horm IGF Res. 2020 Aug-Oct;53-54:101333. doi: 10.1016/j.ghir.2020.101333. Epub 2020 Jul 18.
4
Mechanisms of gut microbiota-mediated bone remodeling.
Gut Microbes. 2018 Jan 2;9(1):84-92. doi: 10.1080/19490976.2017.1371893. Epub 2017 Sep 29.
5
Microbiome mediation of animal life histories via metabolites and insulin-like signalling.
Biol Rev Camb Philos Soc. 2022 Jun;97(3):1118-1130. doi: 10.1111/brv.12833. Epub 2022 Jan 18.
6
The emerging connections between IGF1, the intestinal microbiome, strains and bone growth.
J Mol Endocrinol. 2018 Jul;61(1):T103-T113. doi: 10.1530/JME-17-0292.
7
Connecting the Dots Between the Gut-IGF-1-Prostate Axis: A Role of IGF-1 in Prostate Carcinogenesis.
Front Endocrinol (Lausanne). 2022 Mar 15;13:852382. doi: 10.3389/fendo.2022.852382. eCollection 2022.
8
Alterations of the GH/IGF-I Axis and Gut Microbiome after Traumatic Brain Injury: A New Clinical Syndrome?
J Clin Endocrinol Metab. 2020 Sep 1;105(9). doi: 10.1210/clinem/dgaa398.
9
Gut microbiota: puppeteer of the host juvenile growth.
Curr Opin Clin Nutr Metab Care. 2018 May;21(3):179-183. doi: 10.1097/MCO.0000000000000463.
10
Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations.
J Physiol. 2018 Oct;596(20):4923-4944. doi: 10.1113/JP276431. Epub 2018 Aug 28.

引用本文的文献

1
Characterization of fermented foods: bone health.
Front Nutr. 2025 Aug 29;12:1648775. doi: 10.3389/fnut.2025.1648775. eCollection 2025.
3
The characteristics, influence factors, and regulatory strategies of growth retardation in ruminants: a review.
Front Vet Sci. 2025 Mar 26;12:1566427. doi: 10.3389/fvets.2025.1566427. eCollection 2025.
4
Children with idiopathic short stature and growth hormone deficiency exhibit similar changes in gut microbiota.
Endocr J. 2025 Jul 1;72(7):791-799. doi: 10.1507/endocrj.EJ24-0615. Epub 2025 Apr 5.
5
Exploring the microbiota-gut-brain axis: impact on brain structure and function.
Front Neuroanat. 2025 Feb 12;19:1504065. doi: 10.3389/fnana.2025.1504065. eCollection 2025.
8
Associations Among Estrogens, the Gut Microbiome and Osteoporosis.
Curr Osteoporos Rep. 2024 Nov 25;23(1):2. doi: 10.1007/s11914-024-00896-w.
9
The gut microbiota: emerging biomarkers and potential treatments for infertility-related diseases.
Front Cell Infect Microbiol. 2024 Sep 26;14:1450310. doi: 10.3389/fcimb.2024.1450310. eCollection 2024.
10
Causal relationship between gut microbiota and insulin-like growth factor 1: a bidirectional two-sample Mendelian randomization study.
Front Cell Infect Microbiol. 2024 Sep 24;14:1406132. doi: 10.3389/fcimb.2024.1406132. eCollection 2024.

本文引用的文献

2
Mechanisms of gut microbiota-mediated bone remodeling.
Gut Microbes. 2018 Jan 2;9(1):84-92. doi: 10.1080/19490976.2017.1371893. Epub 2017 Sep 29.
4
Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System.
Cell Metab. 2017 Jul 5;26(1):110-130. doi: 10.1016/j.cmet.2017.05.008. Epub 2017 Jun 15.
5
Gut Microbiome and Bone: to Build, Destroy, or Both?
Curr Osteoporos Rep. 2017 Aug;15(4):376-384. doi: 10.1007/s11914-017-0382-z.
6
Gut microbiota induce IGF-1 and promote bone formation and growth.
Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7554-E7563. doi: 10.1073/pnas.1607235113. Epub 2016 Nov 7.
8
From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.
Cell. 2016 Jun 2;165(6):1332-1345. doi: 10.1016/j.cell.2016.05.041.
9
Use of Metatranscriptomics in Microbiome Research.
Bioinform Biol Insights. 2016 Apr 20;10:19-25. doi: 10.4137/BBI.S34610. eCollection 2016.
10
Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics.
J Clin Invest. 2016 Jun 1;126(6):2049-63. doi: 10.1172/JCI86062. Epub 2016 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验