Boler-Parseghian Center for Rare and Neglected Diseases and.
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN.
Blood. 2018 Mar 15;131(11):1234-1247. doi: 10.1182/blood-2017-11-814665. Epub 2018 Jan 23.
Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development.
青蒿素耐药性威胁着全球疟疾的防控和消除。磷脂酰肌醇-3-磷酸(PI3P)的升高可导致寄生虫的血红期产生耐药性,未折叠蛋白反应(UPR)也被认为是一种可能减轻青蒿素诱导的毒性蛋白病的蛋白稳态机制。虽然 Kelch13(K13)突变赋予了 PI3P 的作用及其与 UPR 的联系,但目前尚不清楚这两者的作用机制,K13 是青蒿素耐药性的标志物。在这里,我们使用冷冻免疫电子显微镜显示,在感染的红细胞中,K13 聚集在寄生虫内质网(ER)的 PI3P 小管/小泡上。K13 与主要毒力黏附因子 PfEMP1 共定位和共纯化。PfEMP1-K13 蛋白质组在 ER 和细胞质中蛋白输出、质量控制和折叠的多种蛋白稳态系统中得到了全面富集,以及 UPR。在没有 K13 突变的情况下,PI3P 的合成升高也会导致蛋白稳态和临床耐药性的特征。这些发现表明,PI3P 囊泡扩增作为感染红细胞耐药的机制具有关键作用。作为验证,主要耐药突变 K13C580Y 定量增加了 PI3P 小管/小泡,将其输出到整个寄生虫和红细胞。化学抑制剂和荧光显微镜显示,PfEMP1 向红细胞的输出以及感染细胞与宿主内皮受体的细胞黏附的改变是多种 K13 突变体的特征。这些数据表明,扩增的 PI3P 囊泡传播广泛的蛋白稳态能力,可能中和青蒿素的毒性蛋白病,并暗示宿主红细胞在青蒿素耐药性中的作用。所产生的机制见解将对疟疾药物开发产生影响。