Suppr超能文献

疟原虫和宿主人类红细胞的囊泡扩增导致青蒿素耐药性的重塑。

Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance.

机构信息

Boler-Parseghian Center for Rare and Neglected Diseases and.

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN.

出版信息

Blood. 2018 Mar 15;131(11):1234-1247. doi: 10.1182/blood-2017-11-814665. Epub 2018 Jan 23.

Abstract

Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development.

摘要

青蒿素耐药性威胁着全球疟疾的防控和消除。磷脂酰肌醇-3-磷酸(PI3P)的升高可导致寄生虫的血红期产生耐药性,未折叠蛋白反应(UPR)也被认为是一种可能减轻青蒿素诱导的毒性蛋白病的蛋白稳态机制。虽然 Kelch13(K13)突变赋予了 PI3P 的作用及其与 UPR 的联系,但目前尚不清楚这两者的作用机制,K13 是青蒿素耐药性的标志物。在这里,我们使用冷冻免疫电子显微镜显示,在感染的红细胞中,K13 聚集在寄生虫内质网(ER)的 PI3P 小管/小泡上。K13 与主要毒力黏附因子 PfEMP1 共定位和共纯化。PfEMP1-K13 蛋白质组在 ER 和细胞质中蛋白输出、质量控制和折叠的多种蛋白稳态系统中得到了全面富集,以及 UPR。在没有 K13 突变的情况下,PI3P 的合成升高也会导致蛋白稳态和临床耐药性的特征。这些发现表明,PI3P 囊泡扩增作为感染红细胞耐药的机制具有关键作用。作为验证,主要耐药突变 K13C580Y 定量增加了 PI3P 小管/小泡,将其输出到整个寄生虫和红细胞。化学抑制剂和荧光显微镜显示,PfEMP1 向红细胞的输出以及感染细胞与宿主内皮受体的细胞黏附的改变是多种 K13 突变体的特征。这些数据表明,扩增的 PI3P 囊泡传播广泛的蛋白稳态能力,可能中和青蒿素的毒性蛋白病,并暗示宿主红细胞在青蒿素耐药性中的作用。所产生的机制见解将对疟疾药物开发产生影响。

相似文献

3
Mechanisms of artemisinin resistance in Plasmodium falciparum malaria.青蒿素抗药性在恶性疟原虫疟疾中的机制。
Curr Opin Pharmacol. 2018 Oct;42:46-54. doi: 10.1016/j.coph.2018.06.003. Epub 2018 Aug 1.
7
The many paths to artemisinin resistance in Plasmodium falciparum.疟原虫青蒿素耐药性的多种途径。
Trends Parasitol. 2023 Dec;39(12):1060-1073. doi: 10.1016/j.pt.2023.09.011. Epub 2023 Oct 11.
8
Artemisinin Action and Resistance in Plasmodium falciparum.青蒿素在恶性疟原虫中的作用与耐药性
Trends Parasitol. 2016 Sep;32(9):682-696. doi: 10.1016/j.pt.2016.05.010. Epub 2016 Jun 9.

引用本文的文献

3
Endoplasmic Reticulum Stress: Implications in Diseases.内质网应激:在疾病中的意义。
Protein J. 2025 Apr;44(2):147-161. doi: 10.1007/s10930-025-10264-x. Epub 2025 Mar 13.
4
Vesicular mechanisms of drug resistance in apicomplexan parasites.顶复门寄生虫中药物抗性的囊泡机制
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0001024. doi: 10.1128/mmbr.00010-24. Epub 2025 Jan 24.
10
Epidemiology, Detection and Treatment of Malaria.疟疾的流行病学、检测与治疗
Trop Med Infect Dis. 2024 Oct 9;9(10):235. doi: 10.3390/tropicalmed9100235.

本文引用的文献

6
Antimalarial Drug Resistance: A Threat to Malaria Elimination.抗疟药物耐药性:对疟疾消除的威胁。
Cold Spring Harb Perspect Med. 2017 Jul 5;7(7):a025619. doi: 10.1101/cshperspect.a025619.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验