Suppr超能文献

回归动态因果模型的重测信度。

Test-retest reliability of regression dynamic causal modeling.

作者信息

Frässle Stefan, Stephan Klaas E

机构信息

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.

Max Planck Institute for Metabolism Research, Cologne, Germany.

出版信息

Netw Neurosci. 2022 Feb 1;6(1):135-160. doi: 10.1162/netn_a_00215. eCollection 2022 Feb.

Abstract

Regression dynamic causal modeling (rDCM) is a novel and computationally highly efficient method for inferring effective connectivity at the whole-brain level. While face and construct validity of rDCM have already been demonstrated, here we assessed its test-retest reliability-a test-theoretical property of particular importance for clinical applications-together with group-level consistency of connection-specific estimates and consistency of whole-brain connectivity patterns over sessions. Using the Human Connectome Project dataset for eight different paradigms (tasks and rest) and two different parcellation schemes, we found that rDCM provided highly consistent connectivity estimates at the group level across sessions. Second, while test-retest reliability was limited when averaging over all connections (range of mean intraclass correlation coefficient 0.24-0.42 over tasks), reliability increased with connection strength, with stronger connections showing good to excellent test-retest reliability. Third, whole-brain connectivity patterns by rDCM allowed for identifying individual participants with high (and in some cases perfect) accuracy. Comparing the test-retest reliability of rDCM connectivity estimates with measures of functional connectivity, rDCM performed favorably-particularly when focusing on strong connections. Generally, for all methods and metrics, task-based connectivity estimates showed greater reliability than those from the resting state. Our results underscore the potential of rDCM for human connectomics and clinical applications.

摘要

回归动态因果模型(rDCM)是一种用于推断全脑水平有效连接性的新颖且计算效率极高的方法。虽然rDCM的表面效度和结构效度已经得到证实,但在此我们评估了其重测信度——这是临床应用中特别重要的一种测试理论属性——以及特定连接估计的组水平一致性和各次实验中全脑连接模式的一致性。使用人类连接组计划数据集,涵盖八种不同范式(任务和静息态)以及两种不同的脑区划分方案,我们发现rDCM在各次实验的组水平上提供了高度一致的连接性估计。其次,虽然对所有连接进行平均时重测信度有限(任务的组内相关系数均值范围为0.24 - 0.42),但信度会随着连接强度增加,更强的连接显示出良好到优异的重测信度。第三,rDCM的全脑连接模式能够以高(在某些情况下为完美)准确率识别个体参与者。将rDCM连接性估计的重测信度与功能连接性测量进行比较,rDCM表现良好——尤其是在关注强连接时。一般来说,对于所有方法和指标,基于任务的连接性估计比静息态的更具信度。我们的结果强调了rDCM在人类连接组学和临床应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/001b/8959103/7f90c3aca94c/netn-06-135-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验