Suppr超能文献

不同卡尔曼滤波方法在从脑电图数据中推导时变连通性方面的比较。

Comparison of different Kalman filter approaches in deriving time varying connectivity from EEG data.

作者信息

Ghumare Eshwar, Schrooten Maarten, Vandenberghe Rik, Dupont Patrick

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:2199-202. doi: 10.1109/EMBC.2015.7318827.

Abstract

Kalman filter approaches are widely applied to derive time varying effective connectivity from electroencephalographic (EEG) data. For multi-trial data, a classical Kalman filter (CKF) designed for the estimation of single trial data, can be implemented by trial-averaging the data or by averaging single trial estimates. A general linear Kalman filter (GLKF) provides an extension for multi-trial data. In this work, we studied the performance of the different Kalman filtering approaches for different values of signal-to-noise ratio (SNR), number of trials and number of EEG channels. We used a simulated model from which we calculated scalp recordings. From these recordings, we estimated cortical sources. Multivariate autoregressive model parameters and partial directed coherence was calculated for these estimated sources and compared with the ground-truth. The results showed an overall superior performance of GLKF except for low levels of SNR and number of trials.

摘要

卡尔曼滤波方法被广泛应用于从脑电图(EEG)数据中推导时变有效连接性。对于多试验数据,为估计单试验数据而设计的经典卡尔曼滤波器(CKF),可以通过对数据进行试验平均或对单试验估计值进行平均来实现。通用线性卡尔曼滤波器(GLKF)为多试验数据提供了扩展。在这项工作中,我们研究了不同卡尔曼滤波方法在不同信噪比(SNR)、试验次数和EEG通道数情况下的性能。我们使用了一个模拟模型,从中计算头皮记录。从这些记录中,我们估计了皮质源。针对这些估计源计算多元自回归模型参数和偏相干,并与真实值进行比较。结果表明,除了低信噪比和试验次数的情况外,GLKF总体表现更优。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验