Suppr超能文献

关于格兰杰因果连接性估计器的统计性能

On the statistical performance of Granger-causal connectivity estimators.

作者信息

Sameshima Koichi, Takahashi Daniel Y, Baccalá Luiz A

机构信息

Radiology & Oncology Department, Faculdade de Medicina, University of São Paulo, São Paulo, SP, 01246-903, Brazil.

Psychology Department, Neuroscience Institute, Princeton University, Princeton, NJ, USA.

出版信息

Brain Inform. 2015 Jun;2(2):119-133. doi: 10.1007/s40708-015-0015-1. Epub 2015 Apr 22.

Abstract

In this article, we extend the statistical detection performance evaluation of linear connectivity from Sameshima et al. (in: Slezak et al. (eds.) Lecture Notes in Computer Science, 2014) via brand new Monte Carlo simulations of three widely used toy models under different data record lengths for a classic time domain multivariate Granger causality test, information partial directed coherence, information directed transfer function, and include conditional multivariate Granger causality whose behaviour was found to be anomalous.

摘要

在本文中,我们通过对三个广泛使用的玩具模型进行全新的蒙特卡罗模拟,扩展了Sameshima等人(见:Slezak等人(编)《计算机科学讲义》,2014年)对线性连通性的统计检测性能评估。这些模拟针对经典时域多变量格兰杰因果检验、信息偏直接相干性、信息直接传递函数,在不同数据记录长度下进行,并且包括条件多变量格兰杰因果关系,其行为被发现是异常的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b894/4883150/5a4ee85014be/40708_2015_15_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验