Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh.
Biomed Res Int. 2017;2017:3720589. doi: 10.1155/2017/3720589. Epub 2017 Dec 10.
In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.
鉴于基于脑机接口 (BCI) 的应用程序最近有所增加,因此有效地对各种心理任务进行分类的重要性如今已大大提高。为了获得有效的分类,需要有效的特征提取方案,为此,在提出的方法中,利用了脑电图 (EEG) 数据之间的通道间关系。预计不同心理任务的不同组合的通道之间的相关性将不同,这可以用来提取独特的特征。经验模态分解 (EMD) 技术用于对从一个通道获得的测试 EEG 信号进行处理,该技术提供了多个固有模态函数 (IMF),并从通道间 IMF 数据中提取相关系数。同时,还从每个 IMF 中获得不同的统计特征。最后,利用 EEG 信号的所选 IMF 的通道间相关特征和通道内统计特征形成特征矩阵。使用支持向量机 (SVM) 分类器的不同核来执行分类任务。利用包含五个不同心理任务的十种不同组合的 EEG 数据集来演示分类性能,与现有方法相比,所提出的方案实现了非常高的准确性。