Shang Haikun, Li Feng, Wu Yingjie
College of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China.
State Grid Electric Power Research Institute, Xinjiang 830011, China.
Entropy (Basel). 2019 Jan 17;21(1):81. doi: 10.3390/e21010081.
Partial discharge (PD) fault analysis is an important tool for insulation condition diagnosis of electrical equipment. In order to conquer the limitations of traditional PD fault diagnosis, a novel feature extraction approach based on variational mode decomposition (VMD) and multi-scale dispersion entropy (MDE) is proposed. Besides, a hypersphere multiclass support vector machine (HMSVM) is used for PD pattern recognition with extracted PD features. Firstly, the original PD signal is decomposed with VMD to obtain intrinsic mode functions (IMFs). Secondly proper IMFs are selected according to central frequency observation and MDE values in each IMF are calculated. And then principal component analysis (PCA) is introduced to extract effective principle components in MDE. Finally, the extracted principle factors are used as PD features and sent to HMSVM classifier. Experiment results demonstrate that, PD feature extraction method based on VMD-MDE can extract effective characteristic parameters that representing dominant PD features. Recognition results verify the effectiveness and superiority of the proposed PD fault diagnosis method.
局部放电(PD)故障分析是电气设备绝缘状态诊断的重要工具。为克服传统PD故障诊断的局限性,提出了一种基于变分模态分解(VMD)和多尺度分散熵(MDE)的新型特征提取方法。此外,采用超球面多类支持向量机(HMSVM)对提取的PD特征进行PD模式识别。首先,用VMD分解原始PD信号以获得本征模态函数(IMF)。其次,根据中心频率观察选择合适的IMF,并计算每个IMF中的MDE值。然后引入主成分分析(PCA)以提取MDE中的有效主成分。最后,将提取的主因子用作PD特征并发送到HMSVM分类器。实验结果表明,基于VMD-MDE的PD特征提取方法能够提取代表主要PD特征的有效特征参数。识别结果验证了所提出的PD故障诊断方法的有效性和优越性。