Bosch-Bayard Jorge, Galán-García Lídice, Fernandez Thalia, Lirio Rolando B, Bringas-Vega Maria L, Roca-Stappung Milene, Ricardo-Garcell Josefina, Harmony Thalía, Valdes-Sosa Pedro A
Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
Cuban Neuroscience Center, La Habana, Cuba.
Front Neurosci. 2018 Jan 15;11:749. doi: 10.3389/fnins.2017.00749. eCollection 2017.
In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to) different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia), Mathematics (Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented.
在本文中,我们提出了一种新颖的方法来解决分类问题,该方法基于稀疏(数据驱动)回归,并结合了确保稳定性的技术,这对于高维数据集和小样本数量尤为有用。分类器的敏感性和特异性通过稳定的ROC程序进行评估,该程序使用非参数算法来估计ROC曲线下的面积。当分类问题涉及两个以上的组时,即当金标准不是二元的时候,这种方法允许通过ROC技术评估分类的性能。我们将这种方法应用于脑电图频谱特征,以寻找生物标志物,从而能够区分被诊断为未特定化学习障碍(LD-NOS)的不同儿童亚组(并预测其相关性)。患有LD-NOS的儿童存在明显的学习困难,这会影响教育,但无法归入阅读(诵读困难)、数学(计算障碍)或写作(书写障碍)等特定类别。通过使用脑电图频谱,我们旨在识别在个体病例中可能与特定学习障碍相关的脑电图模式。这对于基于脑电图提供的信息开发基于个体的治疗方法可能是有用的。在这里,我们研究了85名LD-NOS儿童,他们根据认知测试分数通过聚类技术预先分为三个亚组。分类方程在ROC下产生的稳定边际面积对于第1组与第2组之间的区分是0.71;第1组与第3组之间是0.91;第2组与第1组之间是0.75。还对与认知分数相关的每组脑电图特征进行了讨论。