Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines.

作者信息

Varoquaux Gaël, Raamana Pradeep Reddy, Engemann Denis A, Hoyos-Idrobo Andrés, Schwartz Yannick, Thirion Bertrand

机构信息

Parietal project-team, INRIA Saclay-ile de France, France; CEA/Neurospin bât 145, 91191 Gif-Sur-Yvette, France.

Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada M6A 2E1; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5S 1A1.

出版信息

Neuroimage. 2017 Jan 15;145(Pt B):166-179. doi: 10.1016/j.neuroimage.2016.10.038. Epub 2016 Oct 29.

Abstract

Decoding, i.e. prediction from brain images or signals, calls for empirical evaluation of its predictive power. Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the common decoders in within- and across-subject predictions, on multiple datasets -anatomical and functional MRI and MEG- and simulations. Theory and experiments outline that the popular "leave-one-out" strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%. Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it can be favorable to use sane defaults, in particular for non-sparse decoders.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索