Varoquaux Gaël, Raamana Pradeep Reddy, Engemann Denis A, Hoyos-Idrobo Andrés, Schwartz Yannick, Thirion Bertrand
Parietal project-team, INRIA Saclay-ile de France, France; CEA/Neurospin bât 145, 91191 Gif-Sur-Yvette, France.
Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada M6A 2E1; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5S 1A1.
Neuroimage. 2017 Jan 15;145(Pt B):166-179. doi: 10.1016/j.neuroimage.2016.10.038. Epub 2016 Oct 29.
Decoding, i.e. prediction from brain images or signals, calls for empirical evaluation of its predictive power. Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the common decoders in within- and across-subject predictions, on multiple datasets -anatomical and functional MRI and MEG- and simulations. Theory and experiments outline that the popular "leave-one-out" strategy leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%. Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it can be favorable to use sane defaults, in particular for non-sparse decoders.
解码,即从脑图像或信号中进行预测,需要对其预测能力进行实证评估。这种评估是通过交叉验证来实现的,交叉验证也是一种用于调整解码器超参数的方法。本文是一篇关于神经成像中解码的交叉验证程序的综述。它包括对相关理论考量的教学性概述。通过对多个数据集(解剖学和功能性MRI以及MEG)和模拟中受试者内和受试者间预测的常见解码器进行广泛的实证研究,突出了实际应用方面。理论和实验表明,流行的“留一法”策略会导致不稳定和有偏差的估计,应优先采用重复随机分割方法。实验表明神经成像设置中交叉验证的误差条很大:典型的置信区间为10%。嵌套交叉验证可以在避免循环偏差的同时调整解码器的参数。然而,我们发现使用合理的默认值可能是有利的,特别是对于非稀疏解码器。