Suppr超能文献

精神分裂症患者和有风险的22q11.2缺失综合征青少年表现出相同的静息态脑电图微状态异常模式:一种精神分裂症的候选内表型。

Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: A candidate endophenotype of schizophrenia.

作者信息

Tomescu Miralena I, Rihs Tonia A, Roinishvili Maya, Karahanoglu F Isik, Schneider Maude, Menghetti Sarah, Van De Ville Dimitri, Brand Andreas, Chkonia Eka, Eliez Stephan, Herzog Michael H, Michel Christoph M, Cappe Céline

机构信息

Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, Geneva, Switzerland.

Institute of Cognitive Neurosciences, Agricultural University of Georgia, Tbilisi, Georgia.

出版信息

Schizophr Res Cogn. 2015 May 27;2(3):159-165. doi: 10.1016/j.scog.2015.04.005. eCollection 2015 Sep.

Abstract

Schizophrenia is a complex psychiatric disorder and many of the factors contributing to its pathogenesis are poorly understood. In addition, identifying reliable neurophysiological markers would improve diagnosis and early identification of this disease. The 22q11.2 deletion syndrome (22q11DS) is one major risk factor for schizophrenia. Here, we show further evidence that deviant temporal dynamics of EEG microstates are a potential neurophysiological marker by showing that the resting state patterns of 22q11DS are similar to those found in schizophrenia patients. The EEG microstates are recurrent topographic distributions of the ongoing scalp potential fields with temporal stability of around 80 ms that are mapping the fast reconfiguration of resting state networks. Five minutes of high-density EEG recordings was analysed from 27 adult chronic schizophrenia patients, 27 adult controls, 30 adolescents with 22q11DS, and 28 adolescent controls. In both patient groups we found increased class C, but decreased class D presence and high transition probabilities towards the class C microstates. Moreover, these aberrant temporal dynamics in the two patient groups were also expressed by perturbations of the long-range dependency of the EEG microstates. These findings point to a deficient function of the salience and attention resting state networks in schizophrenia and 22q11DS as class C and class D microstates were previously associated with these networks, respectively. These findings elucidate similarities between individuals at risk and schizophrenia patients and support the notion that abnormal temporal patterns of EEG microstates might constitute a marker for developing schizophrenia.

摘要

精神分裂症是一种复杂的精神疾病,许多导致其发病机制的因素仍未被充分了解。此外,识别可靠的神经生理标志物将有助于改善该疾病的诊断和早期识别。22q11.2缺失综合征(22q11DS)是精神分裂症的一个主要风险因素。在此,我们通过表明22q11DS的静息状态模式与精神分裂症患者的模式相似,进一步证明脑电图微状态的异常时间动态是一种潜在的神经生理标志物。脑电图微状态是正在进行的头皮电位场的反复出现的地形分布,时间稳定性约为80毫秒,反映了静息状态网络的快速重新配置。对27名成年慢性精神分裂症患者、27名成年对照、30名患有22q11DS的青少年以及28名青少年对照进行了5分钟的高密度脑电图记录分析。在两个患者组中,我们都发现C类微状态增加,但D类微状态出现减少,且向C类微状态的转换概率很高。此外,这两个患者组中的这些异常时间动态也通过脑电图微状态的长程依赖性扰动表现出来。这些发现表明,精神分裂症和22q11DS中突显和注意力静息状态网络功能存在缺陷,因为C类和D类微状态先前分别与这些网络相关。这些发现阐明了有风险个体与精神分裂症患者之间的相似性,并支持脑电图微状态的异常时间模式可能构成精神分裂症发病标志物的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abdf/5779300/98ca258db0f1/gr1.jpg

相似文献

2
Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia?
Schizophr Res. 2014 Aug;157(1-3):175-81. doi: 10.1016/j.schres.2014.05.036. Epub 2014 Jun 21.
3
Resting-state connectivity in the prodromal phase of schizophrenia: insights from EEG microstates.
Schizophr Res. 2014 Feb;152(2-3):513-20. doi: 10.1016/j.schres.2013.12.008. Epub 2014 Jan 2.
4
EEG Microstates and Its Relationship With Clinical Symptoms in Patients With Schizophrenia.
Front Psychiatry. 2021 Oct 28;12:761203. doi: 10.3389/fpsyt.2021.761203. eCollection 2021.
5
EEG microstates are a candidate endophenotype for schizophrenia.
Nat Commun. 2020 Jun 18;11(1):3089. doi: 10.1038/s41467-020-16914-1.
6
Electroencephalographic Microstates During Sleep and Wake in Schizophrenia.
Biol Psychiatry Glob Open Sci. 2024 Aug 9;4(6):100371. doi: 10.1016/j.bpsgos.2024.100371. eCollection 2024 Nov.
7
Abnormalities of Electroencephalography Microstates in Drug-Naïve, First-Episode Schizophrenia.
Front Psychiatry. 2022 Mar 14;13:853602. doi: 10.3389/fpsyt.2022.853602. eCollection 2022.
8
Electroencephalographic Microstates in Schizophrenia and Bipolar Disorder.
Front Psychiatry. 2021 Feb 26;12:638722. doi: 10.3389/fpsyt.2021.638722. eCollection 2021.
9
Evaluation of Resting Spatio-Temporal Dynamics of a Neural Mass Model Using Resting fMRI Connectivity and EEG Microstates.
Front Comput Neurosci. 2020 Jan 17;13:91. doi: 10.3389/fncom.2019.00091. eCollection 2019.
10
Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
Neuroimage. 2012 May 1;60(4):2062-72. doi: 10.1016/j.neuroimage.2012.02.031. Epub 2012 Feb 22.

引用本文的文献

1
Spatiotemporal dynamics of EEG microstate networks over the first two years of life: A multi-cohort longitudinal study.
Imaging Neurosci (Camb). 2025 Jun 27;3. doi: 10.1162/IMAG.a.59. eCollection 2025.
2
EEG microstates: Functional significance and short-term test-retest reliability.
Neuroimage Rep. 2022 Mar 12;2(2):100089. doi: 10.1016/j.ynirp.2022.100089. eCollection 2022 Jun.
3
EEG microstate syntax analysis: A review of methodological challenges and advances.
Neuroimage. 2025 Apr 1;309:121090. doi: 10.1016/j.neuroimage.2025.121090. Epub 2025 Feb 16.
4
Resting state EEG microstate profiling and a machine-learning based classifier model in epilepsy.
Cogn Neurodyn. 2024 Oct;18(5):2419-2432. doi: 10.1007/s11571-024-10095-z. Epub 2024 Mar 23.
5
Valence-specific EEG microstate modulations during self-generated affective states.
Front Psychol. 2024 May 24;15:1300416. doi: 10.3389/fpsyg.2024.1300416. eCollection 2024.
6
Utilization of EEG microstates as a prospective biomarker for assessing the impact of ketogenic diet in GLUT1-DS.
Neurol Sci. 2024 Sep;45(9):4539-4547. doi: 10.1007/s10072-024-07519-3. Epub 2024 Apr 8.
7
Resting-state electroencephalography microstates as a marker of photosensitivity in juvenile myoclonic epilepsy.
Brain Commun. 2024 Feb 19;6(2):fcae054. doi: 10.1093/braincomms/fcae054. eCollection 2024.
8
Mindfulness meditation styles differently modulate source-level MEG microstate dynamics and complexity.
Front Neurosci. 2024 Feb 2;18:1295615. doi: 10.3389/fnins.2024.1295615. eCollection 2024.
9
Combined effects of neuroticism and negative emotional context on spontaneous EEG dynamics.
Soc Cogn Affect Neurosci. 2024 Feb 16;19(1). doi: 10.1093/scan/nsae012.

本文引用的文献

1
Reliability of resting-state microstate features in electroencephalography.
PLoS One. 2014 Dec 5;9(12):e114163. doi: 10.1371/journal.pone.0114163. eCollection 2014.
2
A stochastic model for EEG microstate sequence analysis.
Neuroimage. 2015 Jan 1;104:199-208. doi: 10.1016/j.neuroimage.2014.10.014. Epub 2014 Oct 16.
3
Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia?
Schizophr Res. 2014 Aug;157(1-3):175-81. doi: 10.1016/j.schres.2014.05.036. Epub 2014 Jun 21.
4
EEG-microstate dependent emergence of perceptual awareness.
Front Behav Neurosci. 2014 May 14;8:163. doi: 10.3389/fnbeh.2014.00163. eCollection 2014.
5
Resting-state connectivity in the prodromal phase of schizophrenia: insights from EEG microstates.
Schizophr Res. 2014 Feb;152(2-3):513-20. doi: 10.1016/j.schres.2013.12.008. Epub 2014 Jan 2.
6
A tutorial on data-driven methods for statistically assessing ERP topographies.
Brain Topogr. 2014 Jan;27(1):72-83. doi: 10.1007/s10548-013-0310-1. Epub 2013 Aug 29.
7
EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease.
Clin Neurophysiol. 2013 Jun;124(6):1106-14. doi: 10.1016/j.clinph.2013.01.005. Epub 2013 Feb 9.
8
Altered auditory processing in frontal and left temporal cortex in 22q11.2 deletion syndrome: a group at high genetic risk for schizophrenia.
Psychiatry Res. 2013 May 30;212(2):141-9. doi: 10.1016/j.pscychresns.2012.09.002. Epub 2012 Nov 6.
9
Large-scale brain networks and psychopathology: a unifying triple network model.
Trends Cogn Sci. 2011 Oct;15(10):483-506. doi: 10.1016/j.tics.2011.08.003. Epub 2011 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验