Suppr超能文献

NADH 脱氢酶的可塑性及其在毒力中的作用。

Plasticity of NADH dehydrogenases and their role in virulence.

机构信息

Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461.

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461.

出版信息

Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1599-1604. doi: 10.1073/pnas.1721545115. Epub 2018 Jan 30.

Abstract

Worldwide control of the tuberculosis (TB) epidemic has not been achieved, and the latest statistics show that the TB problem might be more endemic than previously thought. Although drugs and a TB vaccine are available, TB eradication faces the challenges of increasing occurrences of multidrug-resistant and extensively drug-resistant () strains. To forestall this trend, the development of drugs targeting novel pathways is actively pursued. Recently, enzymes of the electron transport chain (ETC) have been determined to be the targets of potent antimycobacterial drugs such as bedaquiline. We focused on the three NADH dehydrogenases (Ndh, NdhA, and Nuo) of the ETC with the purpose of defining their role and essentiality in Each NADH dehydrogenase was deleted in both virulent and BSL2-approved strains, from which the double knockouts ΔΔ and ΔΔ were constructed. The ΔΔ double knockout could not be obtained, suggesting that at least one type II NADH dehydrogenase is required for growth. Δ and ΔΔ showed growth defects in vitro and in vivo, susceptibility to oxidative stress, and redox alterations, while the phenotypes of Δ Δ, and ΔΔ were similar to the parental strain. Interestingly, although Δ had no phenotype in vivo, ΔΔ was the most severely attenuated strain in mice, suggesting a key role for Nuo in vivo when Ndh is absent. We conclude that Ndh is the main NADH dehydrogenase of and that compounds that could target both Ndh and Nuo would be good candidates for TB drug development.

摘要

全球结核病 (TB) 疫情仍未得到控制,最新统计数据显示,TB 问题可能比之前认为的更为普遍。尽管有药物和 TB 疫苗可用,但 TB 根除面临着耐多药和广泛耐药菌株不断增加的挑战。为了防止这种趋势,人们积极寻求针对新途径的药物开发。最近,电子传递链 (ETC) 的酶已被确定为具有强大抗分枝杆菌作用的药物(如贝达喹啉)的靶标。我们专注于 ETC 的三种 NADH 脱氢酶(Ndh、NdhA 和 Nuo),旨在定义它们在中的作用和必要性。我们在毒力株和 BSL2 批准株中都缺失了每种 NADH 脱氢酶,构建了双缺失株 ΔΔ和 ΔΔ。无法获得 ΔΔ双缺失株,表明至少有一种 II 型 NADH 脱氢酶是生长所必需的。Δ 和 ΔΔ在体外和体内均表现出生长缺陷、对氧化应激的敏感性和氧化还原改变,而 ΔΔ、ΔΔ和 ΔΔ的表型与亲本株相似。有趣的是,尽管 Δ 在体内没有表型,但 ΔΔ在小鼠中是衰减最严重的菌株,这表明在 Ndh 缺失时,Nuo 在体内发挥关键作用。我们得出结论,Ndh 是 的主要 NADH 脱氢酶,能够同时靶向 Ndh 和 Nuo 的化合物将是 TB 药物开发的良好候选药物。

相似文献

1
Plasticity of NADH dehydrogenases and their role in virulence.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1599-1604. doi: 10.1073/pnas.1721545115. Epub 2018 Jan 30.
2
Xpert MTB/RIF assay for extrapulmonary tuberculosis and rifampicin resistance.
Cochrane Database Syst Rev. 2018 Aug 27;8(8):CD012768. doi: 10.1002/14651858.CD012768.pub2.
3
Low-complexity manual nucleic acid amplification tests for pulmonary tuberculosis in children.
Cochrane Database Syst Rev. 2025 Jun 25;6(6):CD015806. doi: 10.1002/14651858.CD015806.pub2.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
6
Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin.
Cochrane Database Syst Rev. 2022 May 18;5(5):CD014841. doi: 10.1002/14651858.CD014841.pub2.
7
Xpert MTB/RIF Ultra assay for tuberculosis disease and rifampicin resistance in children.
Cochrane Database Syst Rev. 2022 Sep 6;9(9):CD013359. doi: 10.1002/14651858.CD013359.pub3.
9
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
10

引用本文的文献

1
An unusual genetic switch controls pathogenesis, antibiotic resistance and colony morphology.
bioRxiv. 2025 Jul 28:2025.07.28.667291. doi: 10.1101/2025.07.28.667291.
2
Crp and Arc system directly regulate the transcription of NADH dehydrogenase genes in nitrate and nitrite respiration.
Microbiol Spectr. 2025 Jul;13(7):e0332424. doi: 10.1128/spectrum.03324-24. Epub 2025 May 16.
3
Interplay of niche and respiratory network in shaping bacterial colonization.
J Biol Chem. 2025 Jan;301(1):108052. doi: 10.1016/j.jbc.2024.108052. Epub 2024 Dec 9.
5
Rv0687 a Putative Short-Chain Dehydrogenase Is Required for In Vitro and In Vivo Survival of .
Int J Mol Sci. 2024 Jul 18;25(14):7862. doi: 10.3390/ijms25147862.
6
The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of against chemical stress.
Front Microbiol. 2024 Mar 4;15:1359188. doi: 10.3389/fmicb.2024.1359188. eCollection 2024.
7
DosR's multifaceted role on BCG revealed through multi-omics.
Front Cell Infect Microbiol. 2023 Nov 21;13:1292864. doi: 10.3389/fcimb.2023.1292864. eCollection 2023.
8
Loss-of-function mutations in do not confer delamanid, ethionamide, isoniazid, or pretomanid resistance in .
Antimicrob Agents Chemother. 2024 Jan 10;68(1):e0109623. doi: 10.1128/aac.01096-23. Epub 2023 Dec 1.
9
Comprehensive essentiality analysis of the genome by saturation transposon mutagenesis and deep sequencing.
mBio. 2023 Aug 31;14(4):e0057323. doi: 10.1128/mbio.00573-23. Epub 2023 Jun 23.

本文引用的文献

1
Targeting bacterial energetics to produce new antimicrobials.
Drug Resist Updat. 2018 Jan;36:1-12. doi: 10.1016/j.drup.2017.11.001. Epub 2017 Nov 11.
2
Exploiting the synthetic lethality between terminal respiratory oxidases to kill and clear host infection.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7426-7431. doi: 10.1073/pnas.1706139114. Epub 2017 Jun 26.
3
Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions.
Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0014-2016.
4
Targeting Energy Metabolism in , a New Paradigm in Antimycobacterial Drug Discovery.
mBio. 2017 Apr 11;8(2):e00272-17. doi: 10.1128/mBio.00272-17.
7
Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities.
Microbiol Spectr. 2014 Aug;2(4):MGM2-0014-2013. doi: 10.1128/microbiolspec.MGM2-0014-2013.
9
Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis.
PLoS Pathog. 2014 Nov 20;10(11):e1004510. doi: 10.1371/journal.ppat.1004510. eCollection 2014 Nov.
10
Roles of the two type II NADH dehydrogenases in the survival of Mycobacterium tuberculosis in vitro.
Gene. 2014 Oct 15;550(1):110-6. doi: 10.1016/j.gene.2014.08.024. Epub 2014 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验