Suppr超能文献

相似文献

1
Antitumor T-cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy.
Clin Cancer Res. 2018 Jun 1;24(11):2473-2481. doi: 10.1158/1078-0432.CCR-17-0894. Epub 2018 Jan 31.
2
Metabolic Barriers to T Cell Function in Tumors.
J Immunol. 2018 Jan 15;200(2):400-407. doi: 10.4049/jimmunol.1701041.
3
Metabolic reprograming of anti-tumor immunity.
Curr Opin Immunol. 2017 Jun;46:14-22. doi: 10.1016/j.coi.2017.03.011. Epub 2017 Apr 13.
4
Tissue-resident memory-like T cells in tumor immunity: Clinical implications.
Semin Immunol. 2020 Jun;49:101415. doi: 10.1016/j.smim.2020.101415. Epub 2020 Sep 30.
6
Targeting T cell metabolism for immunotherapy.
J Leukoc Biol. 2021 Dec;110(6):1081-1090. doi: 10.1002/JLB.5MR0921-011R. Epub 2021 Nov 15.
7
Regulatory T cells in cancer; can they be controlled?
Immunotherapy. 2015;7(8):843-6. doi: 10.2217/imt.15.52. Epub 2015 Aug 28.
8
The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy.
Cancer Discov. 2012 Jul;2(7):608-23. doi: 10.1158/2159-8290.CD-11-0314. Epub 2012 Jun 19.
9
Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy.
Front Immunol. 2021 Mar 18;12:645242. doi: 10.3389/fimmu.2021.645242. eCollection 2021.
10
Editorial: Tissue Resident Memory T Cells.
Front Immunol. 2019 May 27;10:1018. doi: 10.3389/fimmu.2019.01018. eCollection 2019.

引用本文的文献

2
Lactylation and Central Nervous System Diseases.
Brain Sci. 2025 Mar 11;15(3):294. doi: 10.3390/brainsci15030294.
4
A functional single-cell metabolic survey identifies Elovl1 as a target to enhance CD8 T cell fitness in solid tumours.
Nat Metab. 2025 Mar;7(3):508-530. doi: 10.1038/s42255-025-01233-w. Epub 2025 Mar 10.
5
Fuel for thought: targeting metabolism in lung cancer.
Transl Lung Cancer Res. 2024 Dec 31;13(12):3692-3717. doi: 10.21037/tlcr-24-662. Epub 2024 Dec 24.
6
From metabolic byproduct to immune modulator: the role of lactate in tumor immune escape.
Front Immunol. 2024 Nov 25;15:1492050. doi: 10.3389/fimmu.2024.1492050. eCollection 2024.
7
Impact of mitochondrial dysfunction on the antitumor effects of immune cells.
Front Immunol. 2024 Oct 11;15:1428596. doi: 10.3389/fimmu.2024.1428596. eCollection 2024.
8
Hypoxia as a Target for Combination with Transarterial Chemoembolization in Hepatocellular Carcinoma.
Pharmaceuticals (Basel). 2024 Aug 11;17(8):1057. doi: 10.3390/ph17081057.
10
Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment.
J Exp Clin Cancer Res. 2024 Jan 13;43(1):19. doi: 10.1186/s13046-023-02925-5.

本文引用的文献

2
Metabolic reprograming of anti-tumor immunity.
Curr Opin Immunol. 2017 Jun;46:14-22. doi: 10.1016/j.coi.2017.03.011. Epub 2017 Apr 13.
4
Regulatory T cells in cancer immunotherapy.
Cell Res. 2017 Jan;27(1):109-118. doi: 10.1038/cr.2016.151. Epub 2016 Dec 20.
5
Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia.
Cancer Immunol Res. 2017 Jan;5(1):9-16. doi: 10.1158/2326-6066.CIR-16-0103. Epub 2016 Dec 9.
6
S-2-hydroxyglutarate regulates CD8 T-lymphocyte fate.
Nature. 2016 Dec 8;540(7632):236-241. doi: 10.1038/nature20165. Epub 2016 Oct 26.
7
L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity.
Cell. 2016 Oct 20;167(3):829-842.e13. doi: 10.1016/j.cell.2016.09.031. Epub 2016 Oct 13.
8
Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck.
N Engl J Med. 2016 Nov 10;375(19):1856-1867. doi: 10.1056/NEJMoa1602252. Epub 2016 Oct 8.
9
Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism.
Science. 2016 Oct 28;354(6311):481-484. doi: 10.1126/science.aaf6284. Epub 2016 Sep 29.
10
LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells.
Cell Metab. 2016 Nov 8;24(5):657-671. doi: 10.1016/j.cmet.2016.08.011. Epub 2016 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验