Suppr超能文献

免疫病理信息放射组学模型在非小细胞肺癌中的构建。

Development of an Immune-Pathology Informed Radiomics Model for Non-Small Cell Lung Cancer.

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Sci Rep. 2018 Jan 31;8(1):1922. doi: 10.1038/s41598-018-20471-5.

Abstract

With increasing use of immunotherapy agents, pretreatment strategies for identifying responders and non-responders is useful for appropriate treatment assignment. We hypothesize that the local immune micro-environment of NSCLC is associated with patient outcomes and that these local immune features exhibit distinct radiologic characteristics discernible by quantitative imaging metrics. We assembled two cohorts of NSCLC patients treated with definitive surgical resection and extracted quantitative parameters from pretreatment CT imaging. The excised primary tumors were then quantified for percent tumor PDL1 expression and density of tumor-infiltrating lymphocyte (via CD3 count) utilizing immunohistochemistry and automated cell counting. Associating these pretreatment radiomics parameters with tumor immune parameters, we developed an immune pathology-informed model (IPIM) that separated patients into 4 clusters (designated A-D) utilizing 4 radiomics features. The IPIM designation was significantly associated with overall survival in both training (5 year OS: 61%, 41%, 50%, and 91%, for clusters A-D, respectively, P = 0.04) and validation (5 year OS: 55%, 72%, 75%, and 86%, for clusters A-D, respectively, P = 0.002) cohorts and immune pathology (all P < 0.05). Specifically, we identified a favorable outcome group characterized by low CT intensity and high heterogeneity that exhibited low PDL1 and high CD3 infiltration, suggestive of a favorable immune activated state. We have developed a NSCLC radiomics signature based on the immune micro-environment and patient outcomes. This manuscript demonstrates model creation and validation in independent cohorts.

摘要

随着免疫治疗药物的应用不断增加,对于识别应答者和无应答者的预处理策略,对于适当的治疗分配是有用的。我们假设 NSCLC 的局部免疫微环境与患者的预后相关,并且这些局部免疫特征表现出可通过定量成像指标识别的不同影像学特征。我们汇集了接受确定性手术切除治疗的 NSCLC 患者的两个队列,并从预处理 CT 成像中提取定量参数。然后,利用免疫组织化学和自动细胞计数,对切除的原发性肿瘤进行肿瘤 PD-L1 表达百分比和肿瘤浸润淋巴细胞密度(通过 CD3 计数)进行定量。将这些预处理放射组学参数与肿瘤免疫参数相关联,我们开发了一种免疫病理信息模型(IPIM),该模型利用 4 个放射组学特征将患者分为 4 个聚类(分别指定为 A-D)。在训练队列(5 年 OS:分别为 A-D 聚类的 61%、41%、50%和 91%,P=0.04)和验证队列(5 年 OS:分别为 A-D 聚类的 55%、72%、75%和 86%,P=0.002)中,IPIM 命名与总体生存率显著相关,并且与免疫病理显著相关(均 P<0.05)。具体而言,我们确定了一个具有低 CT 强度和高异质性的有利预后组,其表现出低 PD-L1 和高 CD3 浸润,提示具有有利的免疫激活状态。我们已经基于免疫微环境和患者预后开发了一种 NSCLC 放射组学特征。本文在独立队列中演示了模型的创建和验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e365/5792427/a5b7d11bd905/41598_2018_20471_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验