Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
Sci Adv. 2018 Jan 26;4(1):eaaq1407. doi: 10.1126/sciadv.aaq1407. eCollection 2018 Jan.
Chlorophylls are essential cofactors for photosynthesis, which sustains global food chains and oxygen production. Billions of tons of chlorophylls are synthesized annually, yet full understanding of chlorophyll biosynthesis has been hindered by the lack of characterization of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase step, which confers the distinctive green color of these pigments. We demonstrate cyclase activity using heterologously expressed enzyme. Next, we assemble a genetic module that encodes the complete chlorophyll biosynthetic pathway and show that it functions in . Expression of 12 genes converts endogenous protoporphyrin IX into chlorophyll a, turning cells green. Our results delineate a minimum set of enzymes required to make chlorophyll and establish a platform for engineering photosynthesis in a heterotrophic model organism.
叶绿素是光合作用的必需辅助因子,它维持着全球食物链和氧气的产生。每年都有数十亿吨的叶绿素被合成,但由于缺乏对赋予这些色素独特绿色的 Mg-原卟啉 IX 单甲酯氧化环化酶步骤的特征描述,因此对叶绿素生物合成的全面理解受到了阻碍。我们使用异源表达的酶证明了环化酶的活性。接下来,我们组装了一个编码完整叶绿素生物合成途径的遗传模块,并证明它在. 中起作用。表达 12 个基因将内源性原卟啉 IX 转化为叶绿素 a,使 细胞变绿。我们的结果描绘了合成叶绿素所需的最少一组酶,并为在异养模式生物中工程光合作用建立了一个平台。