Suppr超能文献

参与四吡咯生物合成与插入的自由基S-腺苷甲硫氨酸酶

Radical SAM Enzymes Involved in Tetrapyrrole Biosynthesis and Insertion.

作者信息

Layer Gunhild, Jahn Martina, Moser Jürgen, Jahn Dieter

机构信息

Institut für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg im Breisgau, Germany.

Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.

出版信息

ACS Bio Med Chem Au. 2022 Feb 16;2(3):196-204. doi: 10.1021/acsbiomedchemau.1c00061. eCollection 2022 Jun 15.

Abstract

The anaerobic biosyntheses of heme, heme , and bacteriochlorophyll all require the action of radical SAM enzymes. During heme biosynthesis in some bacteria, coproporphyrinogen III dehydrogenase (CgdH) catalyzes the decarboxylation of two propionate side chains of coproporphyrinogen III to the corresponding vinyl groups of protoporphyrinogen IX. Its solved crystal structure was the first published structure for a radical SAM enzyme. In bacteria, heme is inserted into enzymes by the cytoplasmic heme chaperone HemW, a radical SAM enzyme structurally highly related to CgdH. In an alternative heme biosynthesis route found in archaea and sulfate-reducing bacteria, the two radical SAM enzymes AhbC and AhbD catalyze the removal of two acetate groups (AhbC) or the decarboxylation of two propionate side chains (AhbD). NirJ, a close homologue of AhbC, is required for propionate side chain removal during the formation of heme in some denitrifying bacteria. Biosynthesis of the fifth ring (ring E) of all chlorophylls is based on an unusual six-electron oxidative cyclization step. The sophisticated conversion of Mg-protoporphyrin IX monomethylester to protochlorophyllide is facilitated by an oxygen-independent cyclase termed BchE, which is a cobalamin-dependent radical SAM enzyme. Most of the radical SAM enzymes involved in tetrapyrrole biosynthesis were recognized as such by Sofia et al. in 2001 (Nucleic Acids Res.2001, 29, 1097-1106) and were biochemically characterized thereafter. Although much has been achieved, the challenging tetrapyrrole substrates represent a limiting factor for enzyme/substrate cocrystallization and the ultimate elucidation of the corresponding enzyme mechanisms.

摘要

血红素、血红素 和细菌叶绿素的厌氧生物合成均需要自由基S-腺苷甲硫氨酸(radical SAM)酶的作用。在一些细菌的血红素生物合成过程中,粪卟啉原III脱氢酶(CgdH)催化粪卟啉原III的两个丙酸侧链脱羧形成原卟啉原IX的相应乙烯基。其解析的晶体结构是首次发表的自由基SAM酶结构。在细菌中,血红素由细胞质血红素伴侣HemW插入到酶中,HemW是一种在结构上与CgdH高度相关的自由基SAM酶。在古细菌和硫酸盐还原细菌中发现的另一条血红素生物合成途径中,两种自由基SAM酶AhbC和AhbD催化去除两个乙酸基团(AhbC)或两个丙酸侧链的脱羧反应(AhbD)。NirJ是AhbC的紧密同源物,在一些反硝化细菌中血红素 形成过程中丙酸侧链去除是必需的。所有叶绿素的第五环(环E)的生物合成基于一个不寻常的六电子氧化环化步骤。由称为BchE的氧非依赖性环化酶促进镁原卟啉IX单甲酯向原叶绿素酸酯的复杂转化,BchE是一种钴胺素依赖性自由基SAM酶。参与四吡咯生物合成的大多数自由基SAM酶在2001年被Sofia等人识别(《核酸研究》2001年,29卷,1097 - 1106页),此后对其进行了生化特性表征。尽管已经取得了很多成果,但具有挑战性的四吡咯底物是酶/底物共结晶以及最终阐明相应酶机制的限制因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39ee/10114771/7d3bf28e16ea/bg1c00061_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验