Suppr超能文献

通过缺陷和界面工程来调节单层 MoS 的电子结构。

Tuning Electronic Structure of Single Layer MoS through Defect and Interface Engineering.

机构信息

Department of Electrical Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.

State Key Laboratory of Nuclear Physics and Technology, School of Physics , Peking University , Beijing 100871 , P. R. China.

出版信息

ACS Nano. 2018 Mar 27;12(3):2569-2579. doi: 10.1021/acsnano.7b08418. Epub 2018 Feb 8.

Abstract

Transition-metal dichalcogenides (TMDs) have emerged in recent years as a special group of two-dimensional materials and have attracted tremendous attention. Among these TMD materials, molybdenum disulfide (MoS) has shown promising applications in electronics, photonics, energy, and electrochemistry. In particular, the defects in MoS play an essential role in altering the electronic, magnetic, optical, and catalytic properties of MoS, presenting a useful way to engineer the performance of MoS. The mechanisms by which lattice defects affect the MoS properties are unsettled. In this work, we reveal systematically how lattice defects and substrate interface affect MoS electronic structure. We fabricated single-layer MoS by chemical vapor deposition and then transferred onto Au, single-layer graphene, hexagonal boron nitride, and CeO as substrates and created defects in MoS by ion irradiation. We assessed how these defects and substrates affect the electronic structure of MoS by performing X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopies, and scanning tunneling microscopy/spectroscopy measurements. Molecular dynamics and first-principles based simulations allowed us to conclude the predominant lattice defects upon ion irradiation and associate those with the experimentally obtained electronic structure. We found that the substrates can tune the electronic energy levels in MoS due to charge transfer at the interface. Furthermore, the reduction state of CeO as an oxide substrate affects the interface charge transfer with MoS. The irradiated MoS had a faster hydrogen evolution kinetics compared to the as-prepared MoS, demonstrating the concept of defect controlled reactivity in this phase. Our findings provide effective probes for energy band and defects in MoS and show the importance of defect engineering in tuning the functionalities of MoS and other TMDs in electronics, optoelectronics, and electrochemistry.

摘要

过渡金属二卤化物(TMDs)近年来作为一类特殊的二维材料出现,引起了极大的关注。在这些 TMD 材料中,二硫化钼(MoS)在电子学、光子学、能源和电化学方面显示出了很有前景的应用。特别是,MoS 中的缺陷在改变 MoS 的电子、磁性、光学和催化性能方面起着至关重要的作用,为工程化 MoS 的性能提供了一种有用的方法。晶格缺陷影响 MoS 性能的机制尚不清楚。在这项工作中,我们系统地揭示了晶格缺陷和衬底界面如何影响 MoS 的电子结构。我们通过化学气相沉积法制备了单层 MoS,并将其转移到 Au、单层石墨烯、六方氮化硼和 CeO 等衬底上,然后通过离子辐照在 MoS 中产生缺陷。我们通过 X 射线光电子能谱、拉曼和光致发光光谱以及扫描隧道显微镜/光谱测量来评估这些缺陷和衬底如何影响 MoS 的电子结构。分子动力学和基于第一性原理的模拟使我们能够得出离子辐照后主要的晶格缺陷,并将其与实验获得的电子结构联系起来。我们发现,由于界面处的电荷转移,衬底可以调整 MoS 的电子能级。此外,CeO 作为氧化物衬底的还原态会影响与 MoS 的界面电荷转移。与未经辐照的 MoS 相比,辐照后的 MoS 具有更快的析氢动力学,证明了这种相中的缺陷控制反应的概念。我们的研究结果为 MoS 的能带和缺陷提供了有效的探针,并表明在电子学、光电学和电化学中,通过缺陷工程来调整 MoS 和其他 TMD 功能的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验