Suppr超能文献

Oxidative stress impairs the function of sarcoplasmic reticulum by oxidation of sulfhydryl groups in the Ca2+-ATPase.

作者信息

Scherer N M, Deamer D W

出版信息

Arch Biochem Biophys. 1986 May 1;246(2):589-601. doi: 10.1016/0003-9861(86)90314-0.

Abstract

Sarcoplasmic reticulum (SR) microsomes were oxidized by exposure to peroxydisulfate, hydrogen peroxide, or iron/ascorbate or by extended storage. The decline in Ca2+-ATPase activity, Ca2+ transport, and the increase in Ca2+ permeability which occurred under these conditions did not appear to result from lipid oxidation because these functional changes were not correlated with the amount of thiobarbituric acid-reactive lipid. Consistent with this interpretation, lipid antioxidants did not prevent the decline in SR function. This suggests that inhibition was independent of lipid oxidation. Instead, oxidation directly inhibited the Ca2+-ATPase. The decline in enzyme activity may be due to oxidation of SH groups, as suggested by the ability of reducing agents to prevent inhibition, the decline in sulfhydryl content of oxidized SR, and the ability of sulfhydryl-binding agents to inhibit Ca2+-ATPase. Inhibition was not primarily due to crosslinking of the Ca2+-ATPase, because sodium dodecyl sulfate-polyacrylamide gels of normal and oxidized SR showed that the area of the Ca2+-ATPase band was not correlated with the Ca2+-ATPase activity. Inhibition of the Ca2+-ATPase by oxidative stress is relevant to models of cellular dysfunction in which toxicity is caused by a rise in intracellular calcium.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验