Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Wales, UK.
Gavin Herbert Eye Institute and the Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
Prog Retin Eye Res. 2018 May;64:65-76. doi: 10.1016/j.preteyeres.2018.01.002. Epub 2018 Feb 2.
Although the cornea is the major refractive element of the eye, the mechanisms controlling corneal shape and hence visual acuity remain unknown. To begin to address this question we have used multiphoton, non-linear optical microscopy to image second harmonic generated signals (SHG) from collagen to characterize the evolutionary and structural changes that occur in the collagen architecture of the corneal stroma. Our studies show that there is a progression in complexity of the stromal collagen organization from lower (fish and amphibians) to higher (birds and mammals) vertebrates, leading to increasing tissue stiffness that may control shape. In boney and cartilaginous fish, the cornea is composed of orthogonally arranged, rotating collagen sheets that extend from limbus to limbus with little or no interaction between adjacent sheets, a structural paradigm analogous to 'plywood'. In amphibians and reptiles, these sheets are broken down into broader lamellae that begin to show branching and anastomosing with adjacent lamellae, albeit maintaining their orthogonal, rotational organization. This paradigm is most complex in birds, which show the highest degree of lamellar branching and anastomosing, forming a 'chicken wire' like pattern most prominent in the midstroma. Mammals, on the other hand, diverged from the orthogonal, rotational organization and developed a random lamellar pattern with branching and anastomosing appearing highest in the anterior stroma, associated with higher mechanical stiffness compared to the posterior stroma.
尽管角膜是眼睛的主要折射元件,但控制角膜形状从而影响视力的机制仍不清楚。为了开始解决这个问题,我们使用多光子、非线性光学显微镜对来自胶原的二次谐波产生信号 (SHG) 进行成像,以表征角膜基质胶原结构中发生的进化和结构变化。我们的研究表明,从低等(鱼类和两栖类)到高等(鸟类和哺乳类)脊椎动物,基质胶原组织的复杂性逐渐增加,导致组织硬度增加,这可能控制着形状。在硬骨鱼和软骨鱼中,角膜由正交排列的旋转胶原片组成,这些胶原片从角膜缘延伸到角膜缘,相邻片之间几乎没有相互作用,这种结构模式类似于“胶合板”。在两栖类和爬行类动物中,这些片层分解成更宽的薄片层,开始出现分支和与相邻薄片层的吻合,尽管它们仍然保持正交、旋转的组织排列。在鸟类中,这种模式最为复杂,表现出最高程度的薄片层分支和吻合,形成一种“鸡笼”样模式,在中基质层最为明显。另一方面,哺乳动物与正交、旋转的组织排列不同,形成一种随机的薄片层模式,分支和吻合在前段基质中最为明显,与后段基质相比,机械硬度更高。