High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, 72074 Tuebingen, Germany.
High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany.
Neuron. 2018 Feb 21;97(4):925-939.e5. doi: 10.1016/j.neuron.2018.01.025.
Functional MRI has been used to map brain activity and functional connectivity based on the strength and temporal coherence of neurovascular-coupled hemodynamic signals. Here, single-vessel fMRI reveals vessel-specific correlation patterns in both rodents and humans. In anesthetized rats, fluctuations in the vessel-specific fMRI signal are correlated with the intracellular calcium signal measured in neighboring neurons. Further, the blood-oxygen-level-dependent (BOLD) signal from individual venules and the cerebral-blood-volume signal from individual arterioles show correlations at ultra-slow (<0.1 Hz), anesthetic-modulated rhythms. These data support a model that links neuronal activity to intrinsic oscillations in the cerebral vasculature, with a spatial correlation length of ∼2 mm for arterioles. In complementary data from awake human subjects, the BOLD signal is spatially correlated among sulcus veins and specified intracortical veins of the visual cortex at similar ultra-slow rhythms. These data support the use of fMRI to resolve functional connectivity at the level of single vessels.
功能磁共振成像 (fMRI) 已被用于根据神经血管耦联的血流信号的强度和时间相干性来绘制大脑活动和功能连接图。在这里,单血管 fMRI 揭示了啮齿动物和人类中血管特异性的相关模式。在麻醉大鼠中,血管特异性 fMRI 信号的波动与相邻神经元中测量的细胞内钙信号相关。此外,来自单个小静脉的血氧水平依赖 (BOLD) 信号和来自单个小动脉的脑血容量信号显示出超慢 (<0.1 Hz)、麻醉调制节律的相关性。这些数据支持了一种模型,即神经元活动与大脑血管的固有振荡相关联,小动脉的空间相关长度约为 2 毫米。在来自清醒人类受试者的补充数据中,BOLD 信号在类似的超慢节律下在脑回静脉和视觉皮层的特定皮质内静脉之间具有空间相关性。这些数据支持使用 fMRI 来解析单血管水平的功能连接。