Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore, 11754.
J Comput Chem. 2018 Jun 15;39(16):953-963. doi: 10.1002/jcc.25168. Epub 2018 Feb 5.
Quantitative structure-activity relationships (QSARs) built using machine learning methods, such as artificial neural networks (ANNs) are powerful in prediction of (antioxidant) activity from quantum mechanical (QM) parameters describing the molecular structure, but are usually not interpretable. This obvious difficulty is one of the most common obstacles in application of ANN-based QSAR models for design of potent antioxidants or elucidating the underlying mechanism. Interpreting the resulting models is often omitted or performed erroneously altogether. In this work, a comprehensive comparative study of six methods (PaD, PaD , weights, stepwise, perturbation and profile) for exploration and interpretation of ANN models built for prediction of Trolox-equivalent antioxidant capacity (TEAC) QM descriptors, is presented. Sum of ranking differences (SRD) was used for ranking of the six methods with respect to the contributions of the calculated QM molecular descriptors toward TEAC. The results show that the PaD, PaD and profile methods are the most stable and give rise to realistic interpretation of the observed correlations. Therefore, they are safely applicable for future interpretations without the opinion of an experienced chemist or bio-analyst. © 2018 Wiley Periodicals, Inc.
基于机器学习方法(如人工神经网络(ANNs))构建的定量构效关系(QSARs)在从描述分子结构的量子力学(QM)参数预测(抗氧化)活性方面非常强大,但通常不可解释。这种明显的困难是将基于 ANN 的 QSAR 模型应用于设计有效抗氧化剂或阐明潜在机制的最常见障碍之一。解释所得到的模型通常被省略或完全错误地执行。在这项工作中,对用于预测 Trolox 等效抗氧化能力(TEAC)QM 描述符的 ANN 模型的构建和解释的六种方法(PaD、PaD、权重、逐步、扰动和剖面)进行了全面的比较研究。使用排序差异总和(SRD)根据计算出的 QM 分子描述符对 TEAC 的贡献对六种方法进行排序。结果表明,PaD、PaD 和剖面方法是最稳定的,并且可以对观察到的相关性进行现实的解释。因此,它们可以安全地应用于未来的解释,而无需经验丰富的化学家和生物分析师的意见。© 2018 威利父子公司