Department of Chemistry, Baotou Teachers' College, Baotou, 014030, China.
Sci Rep. 2021 Apr 22;11(1):8806. doi: 10.1038/s41598-021-88341-1.
The Support vector regression (SVR) was used to investigate quantitative structure-activity relationships (QSAR) of 75 phenolic compounds with Trolox-equivalent antioxidant capacity (TEAC). Geometric structures were optimized at the EF level of the MOPAC software program. Using Pearson correlation coefficient analysis, four molecular descriptors [n(OH), Cosmo Area (CA), Core-Core Repulsion (CCR) and Final Heat of Formation (FHF)] were selected as independent variables. The QSAR model was developed from the training set consisting of 57 compounds and then used the leave-one-out cross-validation (LOOCV) correlation coefficient to evaluate the prediction ability of the QSAR model. Used Artificial neural network (ANN) and multiple linear regression (MLR) for comparing. The RMSE (root mean square error) values of LOOCV in SVR, ANN and MLR models were 0.44, 0.46 and 0.54. The RMSE values of prediction of external 18 compounds were 0.41, 0.39 and 0.54 for SVR, ANN and MLR models, respectively. The obtained result indicated that the SVR models exhibited excellent predicting performance and competent for predicting the TEAC of phenolic compounds.
支持向量回归(SVR)被用于研究具有 Trolox 等效抗氧化能力(TEAC)的 75 种酚类化合物的定量构效关系(QSAR)。采用 MOPAC 软件程序的 EF 水平对几何结构进行优化。通过皮尔逊相关系数分析,选择了四个分子描述符[n(OH)、Cosmo Area (CA)、Core-Core Repulsion (CCR)和最终生成热(FHF)]作为自变量。QSAR 模型是由包含 57 种化合物的训练集开发的,然后使用留一法交叉验证(LOOCV)相关系数来评估 QSAR 模型的预测能力。使用人工神经网络(ANN)和多元线性回归(MLR)进行比较。SVR、ANN 和 MLR 模型的 LOOCV 的 RMSE(均方根误差)值分别为 0.44、0.46 和 0.54。对于 SVR、ANN 和 MLR 模型,外部 18 种化合物预测的 RMSE 值分别为 0.41、0.39 和 0.54。结果表明,SVR 模型具有出色的预测性能,能够胜任酚类化合物 TEAC 的预测。