Suppr超能文献

使用MNE-Python对触觉刺激范式诱发反应进行组分析:一个在处理的每个步骤实现可重复性的流程,从个体传感器空间表示到跨组源空间表示。

Group Analysis in MNE-Python of Evoked Responses from a Tactile Stimulation Paradigm: A Pipeline for Reproducibility at Every Step of Processing, Going from Individual Sensor Space Representations to an across-Group Source Space Representation.

作者信息

Andersen Lau M

机构信息

NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

出版信息

Front Neurosci. 2018 Jan 22;12:6. doi: 10.3389/fnins.2018.00006. eCollection 2018.

Abstract

An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity that are statistically different from baseline. To estimate source activity, processing of the anatomy of subjects based on magnetic resonance imaging is necessary. The necessary steps are covered here: importing magnetic resonance images, segmenting the brain, estimating boundaries between different tissue layers, making fine-resolution scalp surfaces for facilitating co-registration, creating source spaces and creating volume conductors for each subject.

摘要

脑磁图数据的分析流程有一个重要目标,即让研究人员能够将最大精力投入到进行统计比较上,以回答其研究问题,同时在流程的复杂性和机制方面投入最小精力。在此,我展示一组函数和脚本,它们能构建一个清晰、可重复的结构,将原始数据和处理后的数据分别存入文件夹和文件,从而可在以下方面投入最小精力:(1)再次检查正确的输入进入了正确的函数;(2)确保能有意义地访问输出和中间步骤;(3)在多组受试者中高效应用操作;(4)若需要对任何中间步骤进行更改,则重新处理数据。应用这些脚本仅需具备关于Python语言的一般知识。数据分析是对一组20名健康参与者右手食指触觉刺激的神经反应,数据由Elekta Neuromag系统采集。展示了两种分析:分别从个体传感器空间表示到组间传感器空间表示以及组间源空间表示。第一次分析涵盖的处理步骤包括对原始数据进行滤波、在数据中找到感兴趣的事件、对数据进行分段、找到并去除与眨眼和心跳相关的独立成分、通过对分段后的数据求平均来计算参与者的个体诱发反应,以及计算参与者的总体平均传感器空间表示。第二次分析从参与者的个体诱发反应开始,涵盖:估计噪声协方差、创建正向模型、创建逆算子、使用最小范数程序估计皮质表面的分布式源活动、将这些估计映射到一个通用皮质模板上,以及计算与基线在统计上不同的活动模式。为了估计源活动,基于磁共振成像对受试者的解剖结构进行处理是必要的。这里涵盖了必要步骤:导入磁共振图像、分割大脑、估计不同组织层之间的边界、制作高分辨率头皮表面以促进配准、为每个受试者创建源空间和创建体积导体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ef5/5786561/6455768049f7/fnins-12-00006-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验