Calkins Shelby S, Elledge Nicole C, Mueller Katherine E, Marek Stephen M, Couger M B, Elshahed Mostafa S, Youssef Noha H
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
Current affiliation: University of Texas A&M Corpus Christi, Department of Life Sciences, Marine Biology Program, USA.
PeerJ. 2018 Jan 30;6:e4276. doi: 10.7717/peerj.4276. eCollection 2018.
Members of the anaerobic gut fungi (AGF) reside in rumen, hindgut, and feces of ruminant and non-ruminant herbivorous mammals and reptilian herbivores. No protocols for gene insertion, deletion, silencing, or mutation are currently available for the AGF, rendering gene-targeted molecular biological manipulations unfeasible. Here, we developed and optimized an RNA interference (RNAi)-based protocol for targeted gene silencing in the anaerobic gut fungus strain C1A. Analysis of the C1A genome identified genes encoding enzymes required for RNA silencing in fungi (Dicer, Argonaute, QDE-3 homolog DNA helicase, Argonaute-interacting protein, and QIP homolog exonuclease); and the competency of C1A germinating spores for RNA uptake was confirmed using fluorescently labeled small interfering RNAs (siRNA). Addition of chemically-synthesized siRNAs targeting D-lactate dehydrogenase () gene to C1A germinating spores resulted in marked target gene silencing; as evident by significantly lower transcriptional levels, a marked reduction in the D-LDH specific enzymatic activity in intracellular protein extracts, and a reduction in D-lactate levels accumulating in the culture supernatant. Comparative transcriptomic analysis of untreated versus siRNA-treated cultures identified a few off-target siRNA-mediated gene silencing effects. As well, significant differential up-regulation of the gene encoding NAD-dependent 2-hydroxyacid dehydrogenase (Pfam00389) in siRNA-treated C1A cultures was observed, which could possibly compensate for loss of D-LDH as an electron sink mechanism in C1A. The results demonstrate the feasibility of RNAi in anaerobic fungi, and opens the door for gene silencing-based studies in this fungal clade.
厌氧肠道真菌(AGF)存在于反刍动物和非反刍食草哺乳动物以及爬行类食草动物的瘤胃、后肠和粪便中。目前尚无针对AGF的基因插入、缺失、沉默或突变方案,这使得基因靶向分子生物学操作不可行。在此,我们开发并优化了一种基于RNA干扰(RNAi)的方案,用于在厌氧肠道真菌菌株C1A中进行靶向基因沉默。对C1A基因组的分析鉴定出了编码真菌RNA沉默所需酶的基因(Dicer、Argonaute、QDE - 3同源DNA解旋酶、Argonaute相互作用蛋白和QIP同源核酸外切酶);使用荧光标记的小干扰RNA(siRNA)证实了C1A萌发孢子摄取RNA的能力。将靶向D - 乳酸脱氢酶()基因的化学合成siRNA添加到C1A萌发孢子中,导致显著的靶基因沉默;转录水平显著降低、细胞内蛋白质提取物中D - LDH特异性酶活性显著降低以及培养上清液中积累的D - 乳酸水平降低均证明了这一点。对未处理与siRNA处理培养物的比较转录组分析确定了一些脱靶siRNA介导的基因沉默效应。此外,在siRNA处理的C1A培养物中观察到编码NAD依赖性2 - 羟基酸脱氢酶(Pfam00389)的基因有显著的差异上调,这可能作为一种电子汇集机制来补偿C1A中D - LDH的缺失。结果证明了RNAi在厌氧真菌中的可行性,并为该真菌类群基于基因沉默的研究打开了大门。