Zhi Ying Xuan, Lukasik Michelle, Li Michael H, Dolatabadi Elham, Wang Rosalie H, Taati Babak
Toronto Rehabilitation Institute-University Health NetworkTorontoONM5G 2A2Canada.
Department of Computer ScienceUniversity of TorontoTorontoONM5G 1V7Canada.
IEEE J Transl Eng Health Med. 2017 Dec 15;6:2100107. doi: 10.1109/JTEHM.2017.2780836. eCollection 2018.
Robotic stroke rehabilitation therapy can greatly increase the efficiency of therapy delivery. However, when left unsupervised, users often compensate for limitations in affected muscles and joints by recruiting unaffected muscles and joints, leading to undesirable rehabilitation outcomes. This paper aims to develop a computer vision system that augments robotic stroke rehabilitation therapy by automatically detecting such compensatory motions. Nine stroke survivors and ten healthy adults participated in this study. All participants completed scripted motions using a table-top rehabilitation robot. The healthy participants also simulated three types of compensatory motions. The 3-D trajectories of upper body joint positions tracked over time were used for multiclass classification of postures. A support vector machine (SVM) classifier detected lean-forward compensation from healthy participants with excellent accuracy (AUC = 0.98, F1 = 0.82), followed by trunk-rotation compensation (AUC = 0.77, F1 = 0.57). Shoulder-elevation compensation was not well detected (AUC = 0.66, F1 = 0.07). A recurrent neural network (RNN) classifier, which encodes the temporal dependency of video frames, obtained similar results. In contrast, F1-scores in stroke survivors were low for all three compensations while using RNN: lean-forward compensation (AUC = 0.77, F1 = 0.17), trunk-rotation compensation (AUC = 0.81, F1 = 0.27), and shoulder-elevation compensation (AUC = 0.27, F1 = 0.07). The result was similar while using SVM. To improve detection accuracy for stroke survivors, future work should focus on predefining the range of motion, direct camera placement, delivering exercise intensity tantamount to that of real stroke therapies, adjusting seat height, and recording full therapy sessions.
机器人中风康复治疗可以大大提高治疗效率。然而,如果无人监督,使用者往往会通过调动未受影响的肌肉和关节来代偿受影响的肌肉和关节的局限性,从而导致不理想的康复效果。本文旨在开发一种计算机视觉系统,通过自动检测此类代偿性动作来增强机器人中风康复治疗。九名中风幸存者和十名健康成年人参与了这项研究。所有参与者使用桌面康复机器人完成了规定动作。健康参与者还模拟了三种类型的代偿性动作。随时间跟踪的上身关节位置的三维轨迹用于姿势的多类分类。支持向量机(SVM)分类器以极高的准确率检测出健康参与者的前倾代偿(AUC = 0.98,F1 = 0.82),其次是躯干旋转代偿(AUC = 0.77,F1 = 0.57)。肩部抬高代偿检测效果不佳(AUC = 0.66,F1 = 0.07)。编码视频帧时间依赖性的循环神经网络(RNN)分类器得到了类似的结果。相比之下,中风幸存者在使用RNN时,所有三种代偿的F1分数都很低:前倾代偿(AUC = 0.77,F1 = 0.17)、躯干旋转代偿(AUC = 0.81,F1 = 0.27)和肩部抬高代偿(AUC = 0.27,F1 = 0.07)。使用SVM时结果类似。为提高中风幸存者的检测准确率,未来的工作应集中在预定义运动范围、直接放置摄像头、提供与实际中风治疗相当的运动强度、调整座椅高度以及记录完整的治疗过程。