Suppr超能文献

基于变分方法的事件相关 fMRI 诱发脑活动的快速联合检测估计。

Fast joint detection-estimation of evoked brain activity in event-related FMRI using a variational approach.

机构信息

Inria Grenoble Rhône-Alpes, 38334 Saint Ismier Cedex, France.

出版信息

IEEE Trans Med Imaging. 2013 May;32(5):821-37. doi: 10.1109/TMI.2012.2225636. Epub 2012 Oct 19.

Abstract

In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.

摘要

在标准的基于个体的事件相关功能磁共振成像 (fMRI) 数据分析中,通常分别执行两个步骤:检测大脑活动和估计血流动力学响应。由于这两个步骤本质上是相关的,我们采用了所谓的基于区域的联合检测-估计 (JDE) 框架,该框架使用多元推断来解决检测和估计的联合问题。JDE 通过利用 BOLD 响应的区域双线性生成模型,并利用马尔可夫模型中的时间和空间信息来对生理先验进行参数估计约束来构建。与使用马尔可夫链蒙特卡罗 (MCMC) 技术对难以处理的后验分布进行采样的先前工作相比,我们将 JDE 重新表述为缺失数据框架,并为其推断推导出变分期望最大化 (VEM) 算法。在无监督的空间自适应 JDE 推断中,使用变分逼近来近似马尔可夫模型,这允许自动微调空间正则化参数。与之前使用的基于 MCMC 的方法相比,它提供了一种在估计误差和计算成本方面具有有趣特性的新算法。在人工和真实数据上的实验表明,VEM-JDE 对模型失配具有鲁棒性,并在保持激活检测和血流动力学形状恢复良好性能的同时提供计算优势。

相似文献

4
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.具有空间3D先验的快速贝叶斯全脑功能磁共振成像分析。
Neuroimage. 2017 Feb 1;146:211-225. doi: 10.1016/j.neuroimage.2016.11.040. Epub 2016 Nov 19.

引用本文的文献

9
Variational Bayesian causal connectivity analysis for fMRI.功能磁共振成像的变分贝叶斯因果连通性分析。
Front Neuroinform. 2014 May 5;8:45. doi: 10.3389/fninf.2014.00045. eCollection 2014.

本文引用的文献

1
Functional regression via variational Bayes.通过变分贝叶斯进行函数回归
Electron J Stat. 2011 Jan 1;5:572-602. doi: 10.1214/11-ejs619.
3
Spatially adaptive mixture modeling for analysis of FMRI time series.基于空间适应性混合模型的 fMRI 时间序列分析。
IEEE Trans Med Imaging. 2010 Apr;29(4):1059-74. doi: 10.1109/TMI.2010.2042064. Epub 2010 Mar 25.
5
Probabilistic anatomo-functional parcellation of the cortex: how many regions?皮质的概率性解剖学-功能分区:多少个区域?
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):399-406. doi: 10.1007/978-3-540-85990-1_48.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验