Inria Grenoble Rhône-Alpes, 38334 Saint Ismier Cedex, France.
IEEE Trans Med Imaging. 2013 May;32(5):821-37. doi: 10.1109/TMI.2012.2225636. Epub 2012 Oct 19.
In standard within-subject analyses of event-related functional magnetic resonance imaging (fMRI) data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based joint detection-estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a variational expectation-maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model misspecification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery.
在标准的基于个体的事件相关功能磁共振成像 (fMRI) 数据分析中,通常分别执行两个步骤:检测大脑活动和估计血流动力学响应。由于这两个步骤本质上是相关的,我们采用了所谓的基于区域的联合检测-估计 (JDE) 框架,该框架使用多元推断来解决检测和估计的联合问题。JDE 通过利用 BOLD 响应的区域双线性生成模型,并利用马尔可夫模型中的时间和空间信息来对生理先验进行参数估计约束来构建。与使用马尔可夫链蒙特卡罗 (MCMC) 技术对难以处理的后验分布进行采样的先前工作相比,我们将 JDE 重新表述为缺失数据框架,并为其推断推导出变分期望最大化 (VEM) 算法。在无监督的空间自适应 JDE 推断中,使用变分逼近来近似马尔可夫模型,这允许自动微调空间正则化参数。与之前使用的基于 MCMC 的方法相比,它提供了一种在估计误差和计算成本方面具有有趣特性的新算法。在人工和真实数据上的实验表明,VEM-JDE 对模型失配具有鲁棒性,并在保持激活检测和血流动力学形状恢复良好性能的同时提供计算优势。