Suppr超能文献

集成光电微探针。

Integrated optoelectronic microprobes.

机构信息

Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany.

Laboratory for Biomedical Microsystems, Department of Microsystems Engineering - IMTEK & BrainLinks-BrainTools Center, University of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany.

出版信息

Curr Opin Neurobiol. 2018 Jun;50:72-82. doi: 10.1016/j.conb.2018.01.010. Epub 2018 Feb 4.

Abstract

Optogenetics opened not only new exciting opportunities to interrogate the nervous system but also requires adequate probes to facilitate these wishes. Therefore, a multidisciplinary effort is essential to match these technical opportunities with biological needs in order to establish a stable and functional material-tissue interface. This in turn can address an optical intervention of the genetically modified, light sensitive cells in the nervous system and recording of electrical signals from single cells and neuronal networks that result in behavioral changes. In this review, we present the state of the art of optoelectronic probes and assess advantages and challenges of the different design approaches. At first, we discuss mechanisms and processes at the material-tissue interface that influence the performance of optoelectronic probes in acute and chronic implantations. We classify optoelectronic probes by their property of delivering light to the tissue: by waveguides or by integrated light sources at the sites of intervention. Both approaches are discussed with respect to size, spatial resolution, opportunity to integrate electrodes for electrical recording and potential interactions with the target tissue. At last, we assess translational aspects of the state of the art. Long-term stability of probes and the opportunity to integrate them into fully implantable, wireless systems are a prerequisite for chronic applications and a transfer from fundamental neuroscientific studies into treatment options for diseases and clinical trials.

摘要

光遗传学不仅为研究神经系统开辟了令人兴奋的新机会,还需要合适的探针来实现这些愿望。因此,为了使这些技术机会与生物学需求相匹配,建立稳定和功能的材料-组织界面,需要多学科的努力。反过来,这可以实现对遗传修饰的、对光敏感的细胞进行光学干预,并记录单个细胞和神经元网络的电信号,从而导致行为改变。在这篇综述中,我们介绍了光电探针的最新技术,并评估了不同设计方法的优缺点。首先,我们讨论了影响光电探针在急性和慢性植入物中性能的材料-组织界面的机制和过程。我们根据将光传输到组织的特性对光电探针进行分类:通过波导或在干预部位集成光源。这两种方法都从尺寸、空间分辨率、集成电极进行电记录的机会以及与目标组织的潜在相互作用方面进行了讨论。最后,我们评估了最新技术的转化方面。探针的长期稳定性以及将其集成到完全可植入的无线系统中的机会是慢性应用的前提,也是将基础神经科学研究转化为疾病治疗选择和临床试验的前提。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验