Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1374-E1383. doi: 10.1073/pnas.1718721115. Epub 2018 Jan 29.
Capabilities for recording neural activity in behaving mammals have greatly expanded our understanding of brain function. Some of the most sophisticated approaches use light delivered by an implanted fiber-optic cable to optically excite genetically encoded calcium indicators and to record the resulting changes in fluorescence. Physical constraints induced by the cables and the bulk, size, and weight of the associated fixtures complicate studies on natural behaviors, including social interactions and movements in environments that include obstacles, housings, and other complex features. Here, we introduce a wireless, injectable fluorescence photometer that integrates a miniaturized light source and a photodetector on a flexible, needle-shaped polymer support, suitable for injection into the deep brain at sites of interest. The ultrathin geometry and compliant mechanics of these probes allow minimally invasive implantation and stable chronic operation. In vivo studies in freely moving animals demonstrate that this technology allows high-fidelity recording of calcium fluorescence in the deep brain, with measurement characteristics that match or exceed those associated with fiber photometry systems. The resulting capabilities in optical recordings of neuronal dynamics in untethered, freely moving animals have potential for widespread applications in neuroscience research.
在行为哺乳动物中记录神经活动的能力极大地扩展了我们对大脑功能的理解。一些最先进的方法使用植入光纤电缆输送的光来光学激发遗传编码的钙指示剂,并记录荧光产生的变化。电缆和相关固定装置的体积、尺寸和重量引起的物理限制,使包括社交互动和在包括障碍物、外壳和其他复杂特征的环境中的运动在内的自然行为研究变得复杂。在这里,我们介绍了一种无线、可注射的荧光光度计,它将微型光源和光电探测器集成在柔性、针状聚合物支架上,适合在感兴趣的部位注入深部大脑。这些探头的超薄几何形状和柔软的机械性能允许微创植入和稳定的慢性操作。在自由活动动物的体内研究表明,这项技术允许在深部大脑中进行高保真的钙荧光记录,其测量特性与光纤光度测量系统相关联的特性相匹配或超过。在无束缚、自由移动的动物中对神经元动力学进行光学记录的能力具有广泛应用于神经科学研究的潜力。