Suppr超能文献

用于生物纳米物联网中基于表面接收器的微流控分子通信的对流-扩散-反应系统建模

Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

作者信息

Kuscu Murat, Akan Ozgur B

机构信息

Internet of Everything (IoE) Group, Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom.

Next-generation and Wireless Communications Laboratory (NWCL), Department of Electrical and Electronics Engineering, Koc University, Istanbul, 34450, Turkey.

出版信息

PLoS One. 2018 Feb 7;13(2):e0192202. doi: 10.1371/journal.pone.0192202. eCollection 2018.

Abstract

We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

摘要

我们考虑一种微流控分子通信(MC)系统,其中浓度编码的分子信息通过流体流动引起的对流和扩散进行传输,并由位于微流控通道底部的带有配体受体的基于表面的MC接收器进行检测。整个系统是一个对流 - 扩散 - 反应系统,只能通过数值方法求解,例如有限元分析(FEA)。然而,分析模型对于信息与通信技术(ICT)至关重要,因为它们能够提供一个优化框架来开发先进的通信技术,如最优检测方法和可靠传输方案。在此方向上,我们开发了一个分析模型来近似结合受体浓度的预期时间历程,即用于解码传输信息的接收信号。该模型通过捕捉由层流导致抛物线速度分布所引起的非线性以及有限数量的配体受体导致接收器饱和的情况,避免了使用计算成本高昂的数值方法。该模型还捕捉了由于传质限制导致的反应表面耗尽层的影响以及有限持续时间的分子浓度脉冲在接收器表面通过所产生的移动反应边界的影响。基于所提出的模型,我们推导了近似接收脉冲宽度、脉冲延迟和脉冲幅度的闭式解析表达式,这些表达式可用于从ICT角度优化系统。我们通过将基于模型的分析结果与通过使用COMSOL Multiphysics求解精确系统模型获得的数值结果进行比较,来评估所提出模型的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/985a/5802928/1b96571a48d1/pone.0192202.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验