Section of Pharmacology, Department of Internal Medicine (DiMI), and Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.
Section of Human Anatomy, Department of Experimental Medicine (DIMES), School of Medicine, University of Genova, Genova, Italy.
Cell Death Dis. 2018 Feb 7;9(2):166. doi: 10.1038/s41419-017-0252-8.
According to the "gain-of-toxicity mechanism", neuronal loss during cerebral proteinopathies is caused by accumulation of aggregation-prone conformers of misfolded cellular proteins, although it is still debated which aggregation state actually corresponds to the neurotoxic entity. Autophagy, originally described as a variant of programmed cell death, is now emerging as a crucial mechanism for cell survival in response to a variety of cell stressors, including nutrient deprivation, damage of cytoplasmic organelles, or accumulation of misfolded proteins. Impairment of autophagic flux in neurons often associates with neurodegeneration during cerebral amyloidosis, suggesting a role in clearing neurons from aggregation-prone misfolded proteins. Thus, autophagy may represent a target for innovative therapies. In this work, we show that alterations of autophagy progression occur in neurons following in vitro exposure to the amyloidogenic and neurotoxic prion protein-derived peptide PrP90-231. We report that the increase of autophagic flux represents a strategy adopted by neurons to survive the intracellular accumulation of misfolded PrP90-231. In particular, PrP90-231 internalization in A1 murine mesencephalic neurons occurs in acidic structures, showing electron microscopy hallmarks of autophagosomes and autophagolysosomes. However, these structures do not undergo resolution and accumulate in cytosol, suggesting that, in the presence of PrP90-231, autophagy is activated but its progression is impaired; the inability to clear PrP90-231 via autophagy induces cytotoxicity, causing impairment of lysosomal integrity and cytosolic diffusion of hydrolytic enzymes. Conversely, the induction of autophagy by pharmacological blockade of mTOR kinase or trophic factor deprivation restored autophagy resolution, reducing intracellular PrP90-231 accumulation and neuronal death. Taken together, these data indicate that PrP90-231 internalization induces an autophagic defensive response in A1 neurons, although incomplete and insufficient to grant survival; the pharmacological enhancement of this process exerts neuroprotection favoring the clearing of the internalized peptide and could represents a promising neuroprotective tool for neurodegenerative proteinopathies.
根据“毒性获得机制”,脑蛋白病中的神经元丢失是由错误折叠细胞蛋白的聚集倾向构象的积累引起的,尽管对于哪种聚集状态实际上对应于神经毒性实体仍存在争议。自噬最初被描述为程序性细胞死亡的一种变体,现在作为一种关键机制,用于细胞对各种细胞应激源(包括营养剥夺、细胞质细胞器损伤或错误折叠蛋白积累)的存活反应。神经元中自噬流的损伤通常与脑淀粉样变性中的神经退行性变有关,表明其在清除聚集倾向的错误折叠蛋白的神经元中发挥作用。因此,自噬可能代表一种创新治疗的靶点。在这项工作中,我们表明,在体外暴露于淀粉样变性和神经毒性朊病毒蛋白衍生肽 PrP90-231 后,神经元中的自噬进展发生改变。我们报告说,自噬通量的增加代表了神经元为了在细胞内积累错误折叠的 PrP90-231 而存活的一种策略。特别是,PrP90-231 在 A1 小鼠中脑间充质神经元中的内化发生在酸性结构中,表现出自噬体和自噬溶酶体的电子显微镜特征。然而,这些结构不会发生分辨率并在细胞质中积累,这表明,在存在 PrP90-231 的情况下,自噬被激活但进展受损;不能通过自噬清除 PrP90-231 会诱导细胞毒性,导致溶酶体完整性受损和水解酶在细胞质中的扩散。相反,通过药理学阻断 mTOR 激酶或营养因子剥夺诱导自噬会恢复自噬分辨率,减少细胞内 PrP90-231 积累和神经元死亡。综上所述,这些数据表明,PrP90-231 内化诱导 A1 神经元中的自噬防御反应,尽管不完全且不足以保证存活;该过程的药理学增强会发挥神经保护作用,有利于清除内化的肽,并且可能是神经退行性蛋白病的有前途的神经保护工具。