Jagsch Stefan T, Triviño Noelia Vico, Lohof Frederik, Callsen Gordon, Kalinowski Stefan, Rousseau Ian M, Barzel Roy, Carlin Jean-François, Jahnke Frank, Butté Raphaël, Gies Christopher, Hoffmann Axel, Grandjean Nicolas, Reitzenstein Stephan
Institute of Solid State Physics, Technische Universität Berlin, D-10623, Berlin, Germany.
Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
Nat Commun. 2018 Feb 8;9(1):564. doi: 10.1038/s41467-018-02999-2.
Exploring the limits of spontaneous emission coupling is not only one of the central goals in the development of nanolasers, it is also highly relevant regarding future large-scale photonic integration requiring energy-efficient coherent light sources with a small footprint. Recent studies in this field have triggered a vivid debate on how to prove and interpret lasing in the high-β regime. We investigate close-to-ideal spontaneous emission coupling in GaN nanobeam lasers grown on silicon. Such nanobeam cavities allow for efficient funneling of spontaneous emission from the quantum well gain material into the laser mode. By performing a comprehensive optical and quantum-optical characterization, supported by microscopic modeling of the nanolasers, we identify high-β lasing at room temperature and show a lasing transition in the absence of a threshold nonlinearity at 156 K. This peculiar characteristic is explained in terms of a temperature and excitation power-dependent interplay between zero-dimensional and two-dimensional gain contributions.
探索自发发射耦合的极限不仅是纳米激光器发展的核心目标之一,对于未来需要具有小尺寸、高能效相干光源的大规模光子集成也具有高度相关性。该领域最近的研究引发了一场关于如何在高β区域证明和解释激光发射的激烈辩论。我们研究了生长在硅上的氮化镓纳米束激光器中接近理想的自发发射耦合。这种纳米束腔允许自发发射从量子阱增益材料有效地汇聚到激光模式中。通过进行全面的光学和量子光学表征,并辅以纳米激光器的微观建模,我们确定了室温下的高β激光发射,并展示了在156K时无阈值非线性情况下的激光跃迁。这种特殊特性是根据零维和二维增益贡献之间温度和激发功率相关的相互作用来解释的。