Panidis I P, Ross J, Mintz G S
J Am Coll Cardiol. 1986 Aug;8(2):317-26. doi: 10.1016/s0735-1097(86)80046-8.
Doppler echocardiography was performed in 136 patients with a normally functioning prosthetic valve in the aortic (n = 59), mitral (n = 74) and tricuspid (n = 3) positions. These included patients with St. Jude (n = 82), Björk-Shiley (n = 18), Beall (n = 13), Starr-Edwards (n = 7) or tissue (n = 16) valves. Peak and mean pressure gradients across the prostheses were measured using the simplified Bernoulli equation. The prosthetic valve orifice (PVO, in square centimeters), only in the mitral position, was calculated by the equation: PVO = 220/pressure half-time. In the aortic position, the St. Jude valve had a lower peak velocity (2.3 +/- 0.6 m/s, range 1.0 to 3.9), peak gradient (22 +/- 12 mm Hg, range 4 to 61) and mean gradient (12 +/- 7 mm Hg, range 2 to 32) than the other valves (p less than 0.05) when compared with Starr-Edwards). In the mitral position, the St. Jude valve had the largest orifice (3.0 +/- 0.6 cm2, range 1.8 to 5.0) (p less than 0.0001 compared with all other valves). Insignificant regurgitation was commonly found by pulsed mode Doppler technique in patients with a St. Jude or Björk-Shiley valve in the aortic or mitral position and in patients with a Starr-Edwards or tissue valve in the aortic position. In 17 other patients with a malfunctioning prosthesis (four St. Jude, two Björk-Shiley, four Beall and seven tissue valves) proven by cardiac catheterization, surgery or autopsy, Doppler echocardiography correctly identified the complication (significant regurgitation or obstruction) in all but 2 patients who had a Beall valve. It is concluded that 1) the St. Jude valve appears to have the most optimal hemodynamics; mild regurgitation can be detected by the Doppler technique in normally functioning St. Jude and Björk-Shiley valves in the aortic or mitral position and in Starr-Edwards and tissue valves in the aortic position, and 2) Doppler echocardiography is a useful method for the detection of prosthetic valve malfunction, especially when the St. Jude, Björk-Shiley and tissue valves are assessed.
对136例主动脉瓣(n = 59)、二尖瓣(n = 74)和三尖瓣(n = 3)位置人工瓣膜功能正常的患者进行了多普勒超声心动图检查。这些患者包括植入圣犹达(n = 82)、比约克-希利(n = 18)、比尔(n = 13)、斯塔尔-爱德华兹(n = 7)或组织瓣膜(n = 16)的患者。使用简化的伯努利方程测量人工瓣膜两端的峰值和平均压力阶差。仅对二尖瓣位置计算人工瓣膜口面积(PVO,平方厘米),公式为:PVO = 220/压力减半时间。在主动脉瓣位置,与斯塔尔-爱德华兹瓣膜相比,圣犹达瓣膜的峰值速度较低(2.3±0.6 m/s,范围1.0至3.9)、峰值阶差较低(22±12 mmHg,范围4至61)和平均阶差较低(12±7 mmHg,范围2至32)(p < 0.05)。在二尖瓣位置,圣犹达瓣膜的瓣口面积最大(3.0±0.6 cm²,范围1.8至5.0)(与所有其他瓣膜相比,p < 0.0001)。采用脉冲模式多普勒技术,在主动脉瓣或二尖瓣位置植入圣犹达或比约克-希利瓣膜的患者以及主动脉瓣位置植入斯塔尔-爱德华兹或组织瓣膜的患者中,常发现少量反流。在另外17例经心导管检查、手术或尸检证实人工瓣膜功能障碍的患者(4例圣犹达瓣膜、2例比约克-希利瓣膜、4例比尔瓣膜和7例组织瓣膜)中,除2例植入比尔瓣膜的患者外,多普勒超声心动图正确识别了所有并发症(明显反流或梗阻)。结论为:1)圣犹达瓣膜似乎具有最理想的血流动力学;在主动脉瓣或二尖瓣位置功能正常的圣犹达和比约克-希利瓣膜以及主动脉瓣位置的斯塔尔-爱德华兹和组织瓣膜中,多普勒技术可检测到轻度反流;2)多普勒超声心动图是检测人工瓣膜功能障碍的有用方法,尤其是在评估圣犹达、比约克-希利和组织瓣膜时。