Suppr超能文献

冠状动脉搭桥术后重症监护病房住院时间预测模型的系统评价

Models to predict length of stay in the Intensive Care Unit after coronary artery bypass grafting: a systematic review.

作者信息

Atashi Alireza, Verburg Ilona W, Karim Hesam, Miri Mirmohammad, Abu-Hanna Ameen, de Jonge Evert, de Keizer Nicolette F, Eslami Saeid

机构信息

E-health Department, Virtual School, Tehran University of Medical Sciences, Tehran, Iran.

Department of Medical Informatics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.

出版信息

J Cardiovasc Surg (Torino). 2018 Jun;59(3):471-482. doi: 10.23736/S0021-9509.18.09847-6. Epub 2018 Feb 8.

Abstract

INTRODUCTION

Intensive Care Units (ICU) length of stay (LoS) prediction models are used to compare different institutions and surgeons on their performance, and is useful as an efficiency indicator for quality control. There is little consensus about which prediction methods are most suitable to predict (ICU) length of stay. The aim of this study is to systematically review models for predicting ICU LoS after coronary artery bypass grafting and to assess the reporting and methodological quality of these models to apply them for benchmarking.

EVIDENCE ACQUISITION

A general search was conducted in Medline and Embase up to 31-12-2016. Three authors classified the papers for inclusion by reading their title, abstract and full text. All original papers describing development and/or validation of a prediction model for LoS in the ICU after CABG surgery were included. We used a checklist developed for critical appraisal and data extraction for systematic reviews of prediction modeling and extended it on handling specific patients subgroups. We also defined other items and scores to assess the methodological and reporting quality of the models.

EVIDENCE SYNTHESIS

Of 5181 uniquely identified articles, fifteen studies were included of which twelve on development of new models and three on validation of existing models. All studies used linear or logistic regression as method for model development, and reported various performance measures based on the difference between predicted and observed ICU LoS. Most used a prospective (46.6%) or retrospective study design (40%). We found heterogeneity in patient inclusion/exclusion criteria; sample size; reported accuracy rates; and methods of candidate predictor selection. Most (60%) studies have not mentioned the handling of missing values and none compared the model outcome measure of survivors with non-survivors. For model development and validation studies respectively, the maximum reporting (methodological) scores were 66/78 and 62/62 (14/22 and 12/22).

CONCLUSIONS

There are relatively few models for predicting ICU length of stay after CABG. Several aspects of methodological and reporting quality of studies in this field should be improved. There is a need for standardizing outcome and risk factor definitions in order to develop/validate a multi-institutional and international risk scoring system.

摘要

引言

重症监护病房(ICU)住院时间(LoS)预测模型用于比较不同机构和外科医生的表现,并作为质量控制的效率指标。关于哪种预测方法最适合预测ICU住院时间,目前尚无定论。本研究的目的是系统回顾冠状动脉搭桥术后ICU住院时间的预测模型,并评估这些模型的报告质量和方法学质量,以便将其用于基准比较。

证据获取

截至2016年12月31日,在Medline和Embase上进行了全面检索。三位作者通过阅读标题、摘要和全文对纳入的论文进行分类。纳入所有描述冠状动脉搭桥术(CABG)后ICU住院时间预测模型开发和/或验证的原创论文。我们使用了为预测模型系统评价的批判性评价和数据提取而制定的清单,并对其进行扩展以处理特定患者亚组。我们还定义了其他项目和分数来评估模型的方法学和报告质量。

证据综合

在5181篇唯一识别的文章中,纳入了15项研究,其中12项是关于新模型的开发,3项是关于现有模型的验证。所有研究都使用线性或逻辑回归作为模型开发方法,并根据预测的和观察到的ICU住院时间之间的差异报告了各种性能指标。大多数研究采用前瞻性(46.6%)或回顾性研究设计(40%)。我们发现患者纳入/排除标准、样本量、报告的准确率以及候选预测因子选择方法存在异质性。大多数(60%)研究未提及缺失值的处理,且没有一项研究比较了幸存者与非幸存者的模型结果测量。对于模型开发和验证研究,最大报告(方法学)分数分别为66/78和62/62(14/22和12/22)。

结论

冠状动脉搭桥术后预测ICU住院时间的模型相对较少。该领域研究的方法学和报告质量的几个方面需要改进。为了开发/验证多机构和国际风险评分系统,需要对结果和风险因素定义进行标准化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验