Suppr超能文献

小关节、轴向压缩和成分对人类腰椎间盘扭转力学的作用。

Contribution of facet joints, axial compression, and composition to human lumbar disc torsion mechanics.

作者信息

Bezci Semih E, Eleswarapu Ananth, Klineberg Eric O, O'Connell Grace D

机构信息

Department of Mechanical Engineering, University of California Berkeley, Etcheverry Hall, Berkeley, California 94720.

Department of Orthopaedic Surgery, University of California Davis, Medical Center, Sacramento, California 95817.

出版信息

J Orthop Res. 2018 Feb 12. doi: 10.1002/jor.23870.

Abstract

Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

摘要

施加于脊柱的应力分布于椎间盘和小关节之间。结构和成分的变化会改变椎间盘内部以及椎间盘与小关节之间的应力分布。这些变化会影响椎间盘关节的力学性能,包括其刚度、活动范围以及在准静态和动态载荷下的能量吸收。很少有研究评估小关节在扭转中的作用。此外,生化成分与扭转力学之间的关系尚未得到充分理解。因此,本研究的首要目标是在广泛的压缩预载荷下,研究小关节在健康和退变的人体腰椎间盘扭转力学中的作用。为实现这一目标,每个椎间盘在有和没有小关节的情况下,分别在四种不同的压缩预载荷(300 - 1200 N)下进行测试。第二个目标是建立组织成分与扭转力学之间的定量结构 - 功能关系。无论轴向压缩的大小如何,小关节对椎间盘的扭转刚度(约60%)和粘弹性都有显著贡献。本研究结果表明,纤维环糖胺聚糖(GAG)含量在椎间盘扭转力学中起重要作用。随着退变,GAG含量的降低使扭转力学降低了一个多数量级,而胶原蛋白含量对椎间盘扭转力学没有显著影响。本研究报告的生化 - 力学和压缩 - 扭转关系有助于更好地比较使用不同退变程度椎间盘或测试方案的研究,并为生物修复策略提供重要的设计标准。© 2018骨科研究协会。由威利期刊公司出版。《矫形外科学研究》

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验