Suppr超能文献

入射光的波长决定了光系统 II 中的主要电荷分离途径。

The wavelength of the incident light determines the primary charge separation pathway in Photosystem II.

机构信息

Molecular Biomimetics, Department of Chemistry - Ångström, Box 523, Uppsala University, SE 751 20, Uppsala, Sweden.

出版信息

Sci Rep. 2018 Feb 12;8(1):2837. doi: 10.1038/s41598-018-21101-w.

Abstract

Charge separation is a key component of the reactions cascade of photosynthesis, by which solar energy is converted to chemical energy. From this photochemical reaction, two radicals of opposite charge are formed, a highly reducing anion and a highly oxidising cation. We have previously proposed that the cation after far-red light excitation is located on a component different from P, which is the location of the primary electron hole after visible light excitation. Here, we attempt to provide further insight into the location of the primary charge separation upon far-red light excitation of PS II, using the EPR signal of the spin polarized P as a probe. We demonstrate that, under far-red light illumination, the spin polarized P is not formed, despite the primary charge separation still occurring at these conditions. We propose that this is because under far-red light excitation, the primary electron hole is localized on Chl, rather than on P. The fact that identical samples have demonstrated charge separation upon both far-red and visible light excitation supports our hypothesis that two pathways for primary charge separation exist in parallel in PS II reaction centres. These pathways are excited and activated dependent of the wavelength applied.

摘要

电荷分离是光合作用反应级联的关键组成部分,通过该反应级联,太阳能被转化为化学能。从这个光化学反应中,形成了两个带相反电荷的自由基,一个是高度还原的阴离子,另一个是高度氧化的阳离子。我们之前曾提出,远红光激发后形成的阳离子位于不同于 P 的位置,而 P 是可见光激发后形成的初始电子空穴的位置。在这里,我们试图通过使用自旋极化 P 的 EPR 信号作为探针,进一步了解 PS II 在远红光激发下的初始电荷分离的位置。我们证明,尽管在这些条件下仍会发生初始电荷分离,但在远红光照射下,不会形成自旋极化 P。我们提出,这是因为在远红光激发下,初始电子空穴定位于 Chl 上,而不是 P 上。事实上,相同的样品在远红光和可见光激发下都显示出了电荷分离,这支持了我们的假设,即在 PS II 反应中心中存在两种平行的初始电荷分离途径。这些途径的激发和激活依赖于所施加的波长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cddd/5809461/e1d463ad8512/41598_2018_21101_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验