The Aleph Lab Ltd, Oxford, UK.
Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan.
Nat Struct Mol Biol. 2018 Mar;25(3):279-288. doi: 10.1038/s41594-018-0029-5. Epub 2018 Feb 12.
Cotranslational protein folding can facilitate rapid formation of functional structures. However, it can also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched toward the C termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur before assembly. Using high-throughput imaging of protein homomers in Escherichia coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization.
共翻译折叠可以促进功能结构的快速形成。然而,如果两个相互作用的新生链非常接近,也会导致蛋白质复合物过早组装。通过分析已知的蛋白质结构,我们发现同源蛋白质接触在不同的蛋白质组中都集中在多肽链的 C 末端。我们假设这是为了在组装之前发生折叠而产生的进化限制的结果。通过对大肠杆菌中蛋白质同源物的高通量成像和具有 N 端和 C 端寡聚化结构域的工程化蛋白质构建体进行研究,我们发现,确实,具有 C 端同源界面残基的蛋白质比具有 N 端界面残基的蛋白质更有效地组装。通过体内、体外和计算机模拟实验,我们确定了控制同源物成功组装的特征,这些特征对蛋白质设计和表达优化具有重要意义。