Institute for Healthcare Delivery and Population Science, University of Massachusetts Medical School-Baystate, Springfield, MA
University of Massachusetts Medical School-Baystate, Springfield, MA.
J Am Heart Assoc. 2018 Feb 8;7(4):e005256. doi: 10.1161/JAHA.116.005256.
Comparing heart failure (HF) outcomes across hospitals requires adequate risk adjustment. We aimed to develop and validate a model that can be used to compare quality of HF care across hospitals.
We included patients with HF aged ≥18 years admitted to one of 433 hospitals that participated in the Premier Inc Data Warehouse. This model (Premier) contained patient demographics, comorbidities, and acute conditions present on admission, derived from administrative and billing records. In a separate data set derived from electronic health records, we validated the Premier model by comparing hospital risk-standardized mortality rates calculated with the Premier model to those calculated with a validated clinical model containing laboratory data (LAPS [Laboratory-Based Acute Physiology Score]). Among the 200 832 admissions in the Premier Inc Data Warehouse, inpatient mortality was 4.0%. The model showed acceptable discrimination in the warehouse data (C statistic 0.75; 95% confidence interval, 0.74-0.76). In the validation data set, both the Premier model and the LAPS models showed acceptable discrimination (C statistic: Premier: 0.76 [95% confidence interval, 0.74-0.77]; LAPS: 0.78 [95% confidence interval, 0.76-0.80]). Risk-standardized mortality rates for both models ranged from 2% to 7%. A linear regression equation describing the association between Premier- and LAPS-specific mortality rates revealed a regression line with a slope of 0.71 (SE: 0.07). The correlation coefficient of the standardized mortality rates from the 2 models was 0.82.
Compared with a validated model derived from clinical data, an HF mortality model derived from administrative data showed highly correlated risk-standardized mortality rate estimates, suggesting it could be used to identify high- and low-performing hospitals for HF care.
比较医院间心力衰竭(HF)的结局需要充分的风险调整。我们旨在开发和验证一种可用于比较医院间 HF 治疗质量的模型。
我们纳入了年龄≥18 岁的在参与 Premier Inc 数据仓库的 433 家医院之一住院的 HF 患者。该模型(Premier)包含从行政和计费记录中获取的患者人口统计学、合并症和入院时的急性状况。在从电子健康记录中获得的单独数据集上,我们通过比较使用 Premier 模型计算的医院风险标准化死亡率与使用包含实验室数据的经过验证的临床模型(LAPS[基于实验室的急性生理学评分])计算的死亡率来验证 Premier 模型。在 Premier Inc 数据仓库的 200832 例住院中,院内死亡率为 4.0%。该模型在仓库数据中显示出可接受的区分度(C 统计量为 0.75;95%置信区间,0.74-0.76)。在验证数据集上,Premier 模型和 LAPS 模型均显示出可接受的区分度(C 统计量:Premier:0.76[95%置信区间,0.74-0.77];LAPS:0.78[95%置信区间,0.76-0.80])。两个模型的风险标准化死亡率范围为 2%至 7%。描述 Premier 和 LAPS 特定死亡率之间关联的线性回归方程显示出斜率为 0.71(SE:0.07)的回归线。两个模型的标准化死亡率之间的相关系数为 0.82。
与源自临床数据的验证模型相比,源自行政数据的 HF 死亡率模型显示出高度相关的风险标准化死亡率估计值,这表明它可用于识别 HF 治疗的高绩效和低绩效医院。