Suppr超能文献

集体激励减少了无约束人类群体中对社会信息的过度开发。

Collective incentives reduce over-exploitation of social information in unconstrained human groups.

机构信息

Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany.

Science of Intelligence Excellence Cluster, Technical University Berlin, Berlin, Germany.

出版信息

Nat Commun. 2024 Mar 27;15(1):2683. doi: 10.1038/s41467-024-47010-3.

Abstract

Collective dynamics emerge from countless individual decisions. Yet, we poorly understand the processes governing dynamically-interacting individuals in human collectives under realistic conditions. We present a naturalistic immersive-reality experiment where groups of participants searched for rewards in different environments, studying how individuals weigh personal and social information and how this shapes individual and collective outcomes. Capturing high-resolution visual-spatial data, behavioral analyses revealed individual-level gains-but group-level losses-of high social information use and spatial proximity in environments with concentrated (vs. distributed) resources. Incentivizing participants at the group (vs. individual) level facilitated adaptation to concentrated environments, buffering apparently excessive scrounging. To infer discrete choices from unconstrained interactions and uncover the underlying decision mechanisms, we developed an unsupervised Social Hidden Markov Decision model. Computational results showed that participants were more sensitive to social information in concentrated environments frequently switching to a social relocation state where they approach successful group members. Group-level incentives reduced participants' overall responsiveness to social information and promoted higher selectivity over time. Finally, mapping group-level spatio-temporal dynamics through time-lagged regressions revealed a collective exploration-exploitation trade-off across different timescales. Our study unravels the processes linking individual-level strategies to emerging collective dynamics, and provides tools to investigate decision-making in freely-interacting collectives.

摘要

集体动态是由无数个体决策产生的。然而,我们对现实条件下动态相互作用的人类群体中的个体决策过程了解甚少。我们提出了一个自然主义的沉浸式实验,让一组参与者在不同的环境中寻找奖励,研究个人如何权衡个人和社会信息,以及这如何塑造个人和集体的结果。通过捕获高分辨率的视觉空间数据,行为分析揭示了个体层面的收益——但在资源集中(而不是分散)的环境中,个体层面的收益——个人层面的高社会信息使用和空间接近度的损失。在以群体(而不是个体)为激励级别,促进了对集中环境的适应,缓冲了明显过度的争抢。为了从无约束的交互中推断出离散的选择,并揭示潜在的决策机制,我们开发了一种无监督的社会隐马尔可夫决策模型。计算结果表明,参与者在集中环境中对社会信息更加敏感,经常切换到一种社交重新定位的状态,在这种状态下,他们会接近成功的群体成员。群体层面的激励减少了参与者对社会信息的整体反应,并随着时间的推移提高了选择性。最后,通过时间滞后回归映射群体层面的时空动态,揭示了不同时间尺度上的集体探索-开发权衡。我们的研究揭示了将个体层面的策略与新兴的集体动态联系起来的过程,并提供了工具来研究自由互动群体中的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f38/10973496/57a8f89d851b/41467_2024_47010_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验