Suppr超能文献

基于功能近红外光谱脑图像融合卷积神经网络和注意力机制的运动想象分类算法

Classification algorithm for motor imagery fusing CNN and attentional mechanisms based on functional near-infrared spectroscopy brain image.

作者信息

Shi Xingbin, Li Baojiang, Wang Wenlong, Qin Yuxin, Wang Haiyan, Wang Xichao

机构信息

The School of Electrical Engineering, Shanghai DianJi University, Shanghai, China.

Intelligent Decision and Control Technology Institute, Shanghai Dianji University, Shanghai, China.

出版信息

Cogn Neurodyn. 2024 Oct;18(5):2871-2881. doi: 10.1007/s11571-024-10116-x. Epub 2024 May 21.

Abstract

With the continuing development of brain-computer interface technology, the analysis and interpretation of brain signals are becoming increasingly important. In the field of brain-computer interfaces, motor imagery (MI) is an important paradigm for generating specific brain signals through thought alone, rather than actual movement, for computer decoding. Functional near-infrared spectroscopy (fNIRS) imaging technology has been increasingly used in brain-computer interfaces due to its advantages of non-invasiveness, low resource requirements, low cost, and high spatial resolution. Scientists have done a lot of work in channel selection, feature selection, and then applying traditional machine learning methods for classification, but the results achieved so far are still insufficient to meet the conditions for realizing fNIRS brain-computer interfaces. To achieve a higher level of classification of fNIRS signals, we propose a method that fuses CNN and attention mechanisms to analyze the near-infrared signals of motor imagery and mental arithmetic data, which is fed into a neural network by deriving signals of changes in oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) concentrations through the modified Beer-Lambert law, and then applied to the fNIRS dataset of 29 healthy subjects to validate the proposed method. In the fNIRS-based BCI, the average classification accuracy of the MI signal from HbR and HbO reaches 85.92% and 86.21%, respectively, and the average classification accuracy of the MA signal reaches 89.66% and 88.79%, respectively. The advantage of our approach is that it is lightweight and improves the classification accuracy of current BCI fNIRS signals.

摘要

随着脑机接口技术的不断发展,脑信号的分析与解读变得越来越重要。在脑机接口领域,运动想象(MI)是一种重要的范式,它能够仅通过思维而非实际运动来产生特定的脑信号,以供计算机解码。功能近红外光谱(fNIRS)成像技术因其具有非侵入性、资源需求低、成本低以及空间分辨率高的优点,已在脑机接口中得到越来越广泛的应用。科学家们在通道选择、特征选择方面做了大量工作,然后应用传统机器学习方法进行分类,但目前所取得的成果仍不足以满足实现fNIRS脑机接口的条件。为了实现对fNIRS信号更高水平的分类,我们提出了一种融合卷积神经网络(CNN)和注意力机制的方法,用于分析运动想象和心算数据的近红外信号,该方法通过修正的比尔-朗伯定律推导含氧血红蛋白(HbO)和脱氧血红蛋白(HbR)浓度变化的信号,并将其输入神经网络,然后应用于29名健康受试者的fNIRS数据集来验证所提出的方法。在基于fNIRS的脑机接口中,来自HbR和HbO的MI信号的平均分类准确率分别达到85.92%和86.21%,MA信号的平均分类准确率分别达到89.66%和88.79%。我们方法的优点是轻量级,提高了当前脑机接口fNIRS信号的分类准确率。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验