Suppr超能文献

通过选择性通道表示和频谱成像对 EEG-fNIRS 数据进行分类。

Simultaneous EEG-fNIRS Data Classification Through Selective Channel Representation and Spectrogram Imaging.

机构信息

State Key Laboratory of Multimodal Artificial Intelligence SystemsInstitute of Automation, Chinese Academy of Sciences Beijing 100190 China.

School of Artificial IntelligenceUniversity of Chinese Academy of Sciences Beijing 100049 China.

出版信息

IEEE J Transl Eng Health Med. 2024 Aug 23;12:600-612. doi: 10.1109/JTEHM.2024.3448457. eCollection 2024.

Abstract

The integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) can facilitate the advancement of brain-computer interfaces (BCIs). However, existing research in this domain has grappled with the challenge of the efficient selection of features, resulting in the underutilization of the temporal richness of EEG and the spatial specificity of fNIRS data.To effectively address this challenge, this study proposed a deep learning architecture called the multimodal DenseNet fusion (MDNF) model that was trained on two-dimensional (2D) EEG data images, leveraging advanced feature extraction techniques. The model transformed EEG data into 2D images using a short-time Fourier transform, applied transfer learning to extract discriminative features, and consequently integrated them with fNIRS-derived spectral entropy features. This approach aimed to bridge existing gaps in EEG-fNIRS-based BCI research by enhancing classification accuracy and versatility across various cognitive and motor imagery tasks.Experimental results on two public datasets demonstrated the superiority of our model over existing state-of-the-art methods.Thus, the high accuracy and precise feature utilization of the MDNF model demonstrates the potential in clinical applications for neurodiagnostics and rehabilitation, thereby paving the method for patient-specific therapeutic strategies.

摘要

脑电图 (EEG) 和功能近红外光谱 (fNIRS) 的融合可以促进脑机接口 (BCI) 的发展。然而,该领域现有的研究一直难以有效选择特征,导致 EEG 的时间丰富度和 fNIRS 数据的空间特异性利用不足。为了有效解决这一挑战,本研究提出了一种名为多模态 DenseNet 融合 (MDNF) 的深度学习架构,该架构基于二维 (2D) EEG 数据图像进行训练,利用先进的特征提取技术。该模型使用短时傅里叶变换将 EEG 数据转换为 2D 图像,应用迁移学习提取判别特征,并将其与 fNIRS 衍生的光谱熵特征进行集成。该方法旨在通过提高各种认知和运动想象任务的分类准确性和通用性来弥合基于 EEG-fNIRS 的 BCI 研究中的现有差距。在两个公共数据集上的实验结果表明,我们的模型优于现有的最先进方法。因此,MDNF 模型的高精度和精确特征利用证明了其在神经诊断和康复的临床应用中的潜力,从而为针对患者的治疗策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ef4/11379445/365220ed0640/hou1ab-3448457.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验