Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Nat Commun. 2018 Feb 15;9(1):694. doi: 10.1038/s41467-018-03078-2.
Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of community-onset sepsis patients in which the models show summary AUROCs ranging from 0.765-0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Combining the new gene-expression-based prognostic models with prior clinical severity scores leads to significant improvement in prediction of 30-day mortality as measured via AUROC and net reclassification improvement index These models provide an opportunity to develop molecular bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.
改善脓毒症的风险分层和预后预测是一个未满足的关键需求。临床严重程度评分和现有的检测方法,如血乳酸,反映了整体疾病严重程度,但表现不佳,并且不能特异性地揭示脓毒症的潜在失调。在这里,我们展示了由三个科研小组独立生成的 30 天死亡率预后模型,这些模型使用了 12 个发现队列的转录组数据,这些队列主要来自社区获得性脓毒症患者。在五个社区获得性脓毒症患者队列中验证了预测性能,这些模型的汇总 AUROC 范围为 0.765-0.89。在四个医院获得性脓毒症队列中也观察到了类似的性能。将新的基于基因表达的预后模型与先前的临床严重程度评分相结合,可通过 AUROC 和净重新分类改善指数显著提高 30 天死亡率的预测能力。这些模型为开发分子床边检测提供了机会,这可能改善脓毒症患者的风险分层和死亡率预测。