Suppr超能文献

由海洋沉积物来源的SH-B74产生的普利他汀A1有助于控制番茄灰霉病。

Plipastatin A1 produced by a marine sediment-derived SH-B74 contributes to the control of gray mold disease in tomato.

作者信息

Ma Zongwang, Hu Jiangchun

机构信息

Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016 China.

出版信息

3 Biotech. 2018 Feb;8(2):125. doi: 10.1007/s13205-018-1144-z. Epub 2018 Feb 13.

Abstract

Certain species have the capacity to produce cyclic lipopeptides and these lipopeptides are promising determinants contributing to the biocontrol of plant diseases. In the current study, a cyclic lipopeptide plipastatin A1 was isolated from the fermentation broth of a marine sediment-derived SH-B74 by the combination of solid-phase extraction and reversed-phase high-performance liquid chromatography, and its structure was identified by tandem mass spectrometry, high-resolution electro-spray ionization mass spectrometry, and gas chromatography-mass spectrometry together with nuclear magnetic resonance analysis. Moreover, data from activity evaluation revealed that plipastatin A1 has excellent in vitro activity on the suppression of the conidia germination of . , the causal agent of gray mold disease in tomato. Furthermore, plipastatin A1 can successfully decrease the incidence of gray mold disease on tomato leaves at 50 µM concentration. This study indicates that . SH-B74 appears to be a potentially sustainable pesticide to control gray mold disease in tomato plants, and its cyclic lipopeptide plipastatin A1 plays an important role in the in vitro and biocontrol of . .

摘要

某些物种具有产生环脂肽的能力,这些环脂肽有望成为植物病害生物防治的决定性因素。在本研究中,通过固相萃取和反相高效液相色谱相结合的方法,从海洋沉积物来源的SH-B74发酵液中分离出一种环脂肽plipastatin A1,并通过串联质谱、高分辨率电喷雾电离质谱、气相色谱-质谱以及核磁共振分析对其结构进行了鉴定。此外,活性评估数据表明,plipastatin A1在体外对番茄灰霉病病原菌. 的分生孢子萌发具有优异的抑制活性。此外,plipastatin A1在50 µM浓度下能够成功降低番茄叶片上灰霉病的发病率。本研究表明,SH-B74似乎是一种潜在的可持续控制番茄植株灰霉病的农药,其环脂肽plipastatin A1在体外和对. 的生物防治中发挥着重要作用。

相似文献

1
Plipastatin A1 produced by a marine sediment-derived SH-B74 contributes to the control of gray mold disease in tomato.
3 Biotech. 2018 Feb;8(2):125. doi: 10.1007/s13205-018-1144-z. Epub 2018 Feb 13.
3
Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold.
Pestic Biochem Physiol. 2022 Oct;187:105199. doi: 10.1016/j.pestbp.2022.105199. Epub 2022 Aug 8.
4
Isolation and characterization of a new cyclic lipopeptide surfactin from a marine-derived Bacillus velezensis SH-B74.
J Antibiot (Tokyo). 2020 Dec;73(12):863-867. doi: 10.1038/s41429-020-0347-9. Epub 2020 Jul 13.
6
Inhibitory Abilities of Isolates and Their Culture Filtrates against the Gray Mold Caused by on Postharvest Fruit.
Plant Pathol J. 2019 Oct;35(5):425-436. doi: 10.5423/PPJ.OA.03.2019.0064. Epub 2019 Oct 1.
7
Identification of a small antimycotic peptide produced by Bacillus amyloliquefaciens 6256.
Pestic Biochem Physiol. 2018 Sep;150:78-82. doi: 10.1016/j.pestbp.2018.07.006. Epub 2018 Jul 18.
9
BH5 Protects Tomato Plants Against by Production of Specific Antifungal Compounds.
Front Microbiol. 2021 Aug 6;12:707609. doi: 10.3389/fmicb.2021.707609. eCollection 2021.
10
Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants.
PLoS One. 2023 Jun 15;18(6):e0286971. doi: 10.1371/journal.pone.0286971. eCollection 2023.

引用本文的文献

2
Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants.
PLoS One. 2023 Jun 15;18(6):e0286971. doi: 10.1371/journal.pone.0286971. eCollection 2023.
3
for Plant Growth Promotion and Stress Resilience: What Have We Learned?
Plants (Basel). 2022 Sep 22;11(19):2482. doi: 10.3390/plants11192482.
9
Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens.
Mar Drugs. 2021 Jan 28;19(2):69. doi: 10.3390/md19020069.
10
Isolation and characterization of a new cyclic lipopeptide surfactin from a marine-derived Bacillus velezensis SH-B74.
J Antibiot (Tokyo). 2020 Dec;73(12):863-867. doi: 10.1038/s41429-020-0347-9. Epub 2020 Jul 13.

本文引用的文献

1
Purification of Bioactive Lipopeptides Produced by Strain BIA.
Chromatographia. 2016;79(21):1527-1532. doi: 10.1007/s10337-016-3164-3. Epub 2016 Sep 17.
2
Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture.
Front Public Health. 2016 Jul 18;4:148. doi: 10.3389/fpubh.2016.00148. eCollection 2016.
4
International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals.
Int J Gynaecol Obstet. 2015 Dec;131(3):219-25. doi: 10.1016/j.ijgo.2015.09.002. Epub 2015 Oct 1.
5
Unusual Biosynthesis and Structure of Locillomycins from Bacillus subtilis 916.
Appl Environ Microbiol. 2015 Oct;81(19):6601-9. doi: 10.1128/AEM.01639-15. Epub 2015 Jul 10.
6
Agricultural insecticides threaten surface waters at the global scale.
Proc Natl Acad Sci U S A. 2015 May 5;112(18):5750-5. doi: 10.1073/pnas.1500232112. Epub 2015 Apr 13.
7
Biological control agents: from field to market, problems, and challenges.
Trends Biotechnol. 2014 Oct;32(10):493-6. doi: 10.1016/j.tibtech.2014.07.002.
8
Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.
Mol Plant Pathol. 2015 Feb;16(2):177-87. doi: 10.1111/mpp.12170. Epub 2014 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验