Suppr超能文献

CRISPR/Cas9介导的剪接抑制剂普拉地诺醇B的靶点验证

CRISPR/Cas9-mediated target validation of the splicing inhibitor Pladienolide B.

作者信息

Aouida Mustapha, Eid Ayman, Mahfouz Magdy M

机构信息

Laboratory for Genome Engineering, Division of Biological Sciences & Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

出版信息

Biochim Open. 2016 Feb 24;3:72-75. doi: 10.1016/j.biopen.2016.02.001. eCollection 2016 Dec.

Abstract

CRISPR/Cas9 system confers molecular immunity in archeal and bacterial species against invading foreign nucleic acids. CRISPR/Cas9 system is used for genome engineering applications across diverse eukaryotic species. In this study, we demonstrate the utility of the CRISPR/Cas9 genome engineering system for drug target validation in human cells. Pladienolide B is a natural macrolide with antitumor activities mediated through the inhibition of pre-mRNA splicing. To validate the spliceosomal target of Pladienolide B, we employed the CRSIPR/Cas9 system to introduce targeted mutations in the subunits of the SF3B complex in the HEK293T cells. Our data reveal that targeted mutagenesis of the SF3b1 subunit exhibited higher levels of resistance to Pladienolide B. Therefore, our data validate the spliceosomal target of Pladienolide B and provide a proof of concept on using the CRISPR/Cas9 system for drug target identification and validation.

摘要

CRISPR/Cas9系统赋予古细菌和细菌物种针对入侵的外来核酸的分子免疫能力。CRISPR/Cas9系统被用于多种真核物种的基因组工程应用。在本研究中,我们证明了CRISPR/Cas9基因组工程系统在人类细胞中用于药物靶点验证的实用性。普拉地诺醇B是一种天然大环内酯类化合物,其抗肿瘤活性通过抑制前体mRNA剪接介导。为了验证普拉地诺醇B的剪接体靶点,我们使用CRSIPR/Cas9系统在HEK293T细胞的SF3B复合物亚基中引入靶向突变。我们的数据表明,SF3b1亚基的靶向诱变表现出对普拉地诺醇B更高水平的抗性。因此,我们的数据验证了普拉地诺醇B的剪接体靶点,并为使用CRISPR/Cas9系统进行药物靶点鉴定和验证提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5729/5801905/8743d3a44cc2/gr1.jpg

相似文献

1
CRISPR/Cas9-mediated target validation of the splicing inhibitor Pladienolide B.
Biochim Open. 2016 Feb 24;3:72-75. doi: 10.1016/j.biopen.2016.02.001. eCollection 2016 Dec.
2
Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).
Aquat Toxicol. 2015 Jan;158:192-201. doi: 10.1016/j.aquatox.2014.11.016. Epub 2014 Nov 26.
3
Gene Editing in Clinical Practice: Where are We?
Indian J Clin Biochem. 2019 Jan;34(1):19-25. doi: 10.1007/s12291-018-0804-4. Epub 2019 Jan 1.
4
CRISPR-Cas9: A method for establishing rat models of drug metabolism and pharmacokinetics.
Acta Pharm Sin B. 2021 Oct;11(10):2973-2982. doi: 10.1016/j.apsb.2021.01.007. Epub 2021 Jan 7.
5
CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors.
Genome Biol. 2019 Apr 30;20(1):73. doi: 10.1186/s13059-019-1680-9.
6
Evaluation of Methods to Assess Activity of Engineered Genome-Editing Nucleases in Protoplasts.
Front Plant Sci. 2019 Feb 8;10:110. doi: 10.3389/fpls.2019.00110. eCollection 2019.
7
Origins of Programmable Nucleases for Genome Engineering.
J Mol Biol. 2016 Feb 27;428(5 Pt B):963-89. doi: 10.1016/j.jmb.2015.10.014. Epub 2015 Oct 23.
8
[Advances in CRISPR/Cas9-mediated gene editing].
Sheng Wu Gong Cheng Xue Bao. 2015 Nov;31(11):1531-42.
9
Research progress of genome editing and derivative technologies in plants.
Yi Chuan. 2015 Oct;37(10):953-73. doi: 10.16288/j.yczz.15-156.
10
Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.
Front Plant Sci. 2016 Dec 20;7:1928. doi: 10.3389/fpls.2016.01928. eCollection 2016.

引用本文的文献

1
A defective splicing machinery promotes senescence through MDM4 alternative splicing.
Aging Cell. 2024 Nov;23(11):e14301. doi: 10.1111/acel.14301. Epub 2024 Aug 8.
2
Modulation of RNA splicing associated with Wnt signaling pathway using FD-895 and pladienolide B.
Aging (Albany NY). 2022 Mar 1;14(5):2081-2100. doi: 10.18632/aging.203924.
5
Splicing factor SF3B1 promotes endometrial cancer progression via regulating KSR2 RNA maturation.
Cell Death Dis. 2020 Oct 10;11(10):842. doi: 10.1038/s41419-020-03055-y.
6
Multiplex CRISPR Mutagenesis of the Serine/Arginine-Rich (SR) Gene Family in Rice.
Genes (Basel). 2019 Aug 7;10(8):596. doi: 10.3390/genes10080596.
7
Therapeutic approaches to treat human spliceosomal diseases.
Curr Opin Biotechnol. 2019 Dec;60:72-81. doi: 10.1016/j.copbio.2019.01.003. Epub 2019 Feb 15.
8
Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment.
Biomed Res Int. 2016;2016:3681094. doi: 10.1155/2016/3681094. Epub 2016 Aug 16.

本文引用的文献

1
Origins of Programmable Nucleases for Genome Engineering.
J Mol Biol. 2016 Feb 27;428(5 Pt B):963-89. doi: 10.1016/j.jmb.2015.10.014. Epub 2015 Oct 23.
2
Current genome editing tools in gene therapy: new approaches to treat cancer.
Curr Gene Ther. 2015;15(5):511-29. doi: 10.2174/1566523215666150818110241.
3
Applications of CRISPR-Cas9 mediated genome engineering.
Mil Med Res. 2015 May 9;2:11. doi: 10.1186/s40779-015-0038-1. eCollection 2015.
4
Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains.
Nat Biotechnol. 2015 Jun;33(6):661-7. doi: 10.1038/nbt.3235. Epub 2015 May 11.
5
Genome editing at the crossroads of delivery, specificity, and fidelity.
Trends Biotechnol. 2015 May;33(5):280-91. doi: 10.1016/j.tibtech.2015.02.011. Epub 2015 Mar 26.
6
Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing.
Chem Biol. 2015 Jan 22;22(1):107-16. doi: 10.1016/j.chembiol.2014.11.015. Epub 2015 Jan 8.
7
The impact of CRISPR-Cas9 on target identification and validation.
Drug Discov Today. 2015 Apr;20(4):450-7. doi: 10.1016/j.drudis.2014.12.016. Epub 2015 Jan 5.
8
DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells.
Nat Chem Biol. 2014 Aug;10(8):623-5. doi: 10.1038/nchembio.1550. Epub 2014 Jun 15.
9
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.
10
High antitumor activity of pladienolide B and its derivative in gastric cancer.
Cancer Sci. 2014 Jan;105(1):110-6. doi: 10.1111/cas.12317. Epub 2013 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验