Suppr超能文献

大西洋鳉鱼(Fundulus heteroclitus)中芳烃受体2a和2b基因的靶向诱变

Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).

作者信息

Aluru Neelakanteswar, Karchner Sibel I, Franks Diana G, Nacci Diane, Champlin Denise, Hahn Mark E

机构信息

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; Superfund Research Program, Boston University School of Public Health, Boston, MA, USA.

出版信息

Aquat Toxicol. 2015 Jan;158:192-201. doi: 10.1016/j.aquatox.2014.11.016. Epub 2014 Nov 26.

Abstract

Understanding molecular mechanisms of toxicity is facilitated by experimental manipulations, such as disruption of function by gene targeting, that are especially challenging in non-standard model species with limited genomic resources. While loss-of-function approaches have included gene knock-down using morpholino-modified oligonucleotides and random mutagenesis using mutagens or retroviruses, more recent approaches include targeted mutagenesis using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology. These latter methods provide more accessible opportunities to explore gene function in non-traditional model species. To facilitate evaluation of toxic mechanisms for important categories of aryl hydrocarbon pollutants, whose actions are known to be receptor mediated, we used ZFN and CRISPR-Cas9 approaches to generate aryl hydrocarbon receptor 2a (AHR2a) and AHR2b gene mutations in Atlantic killifish (Fundulus heteroclitus) embryos. This killifish is a particularly valuable non-traditional model, with multiple paralogs of AHR whose functions are not well characterized. In addition, some populations of this species have evolved resistance to toxicants such as halogenated aromatic hydrocarbons. AHR-null killifish will be valuable for characterizing the role of the individual AHR paralogs in evolved resistance, as well as in normal development. We first used five-finger ZFNs targeting exons 1 and 3 of AHR2a. Subsequently, CRISPR-Cas9 guide RNAs were designed to target regions in exon 2 and 3 of AHR2a and AHR2b. We successfully induced frameshift mutations in AHR2a exon 3 with ZFN and CRISPR-Cas9 guide RNAs, with mutation frequencies of 10% and 16%, respectively. In AHR2b, mutations were induced using CRISPR-Cas9 guide RNAs targeting sites in both exon 2 (17%) and exon 3 (63%). We screened AHR2b exon 2 CRISPR-Cas9-injected embryos for off-target effects in AHR paralogs. No mutations were observed in closely related AHR genes (AHR1a, AHR1b, AHR2a, AHRR) in the CRISPR-Cas9-injected embryos. Overall, our results demonstrate that targeted genome-editing methods are efficient in inducing mutations at specific loci in embryos of a non-traditional model species, without detectable off-target effects in paralogous genes.

摘要

实验操作有助于理解毒性的分子机制,例如通过基因靶向破坏功能,而这在基因组资源有限的非标准模式物种中极具挑战性。虽然功能丧失方法包括使用吗啉代修饰的寡核苷酸进行基因敲低以及使用诱变剂或逆转录病毒进行随机诱变,但最近的方法包括使用锌指核酸酶(ZFN)、转录激活样效应核酸酶(TALENs)和成簇规律间隔短回文重复序列(CRISPR)-Cas9技术进行靶向诱变。这些后一种方法为在非传统模式物种中探索基因功能提供了更便利的机会。为了便于评估已知通过受体介导作用的重要芳烃污染物类别的毒性机制,我们使用ZFN和CRISPR-Cas9方法在大西洋鳉鱼(Fundulus heteroclitus)胚胎中产生芳烃受体2a(AHR2a)和AHR2b基因突变。这种鳉鱼是一种特别有价值的非传统模式生物,其AHR有多个旁系同源基因,其功能尚未得到很好的表征。此外,该物种的一些种群已经进化出对卤代芳烃等有毒物质的抗性。AHR基因缺失的鳉鱼对于表征各个AHR旁系同源基因在进化抗性以及正常发育中的作用将具有重要价值。我们首先使用靶向AHR2a外显子1和3的五指ZFN。随后,设计CRISPR-Cas9引导RNA靶向AHR2a和AHR2b外显子2和3中的区域。我们成功地使用ZFN和CRISPR-Cas9引导RNA在AHR2a外显子3中诱导了移码突变,突变频率分别为10%和16%。在AHR2b中,使用靶向外显子2(17%)和外显子3(63%)位点的CRISPR-Cas9引导RNA诱导了突变。我们筛选了注射CRISPR-Cas9的AHR2b外显子2胚胎中AHR旁系同源基因的脱靶效应。在注射CRISPR-Cas9的胚胎中,未在密切相关的AHR基因(AHR1a、AHR1b、AHR2a、AHRR)中观察到突变。总体而言,我们的结果表明,靶向基因组编辑方法在非传统模式物种的胚胎中诱导特定位点的突变是有效的,且在旁系同源基因中未检测到脱靶效应。

相似文献

1
Targeted mutagenesis of aryl hydrocarbon receptor 2a and 2b genes in Atlantic killifish (Fundulus heteroclitus).
Aquat Toxicol. 2015 Jan;158:192-201. doi: 10.1016/j.aquatox.2014.11.016. Epub 2014 Nov 26.
2
Embryonic cardiotoxicity of weak aryl hydrocarbon receptor agonists and CYP1A inhibitor fluoranthene in the Atlantic killifish (Fundulus heteroclitus).
Comp Biochem Physiol C Toxicol Pharmacol. 2016 Oct;188:45-51. doi: 10.1016/j.cbpc.2016.05.005. Epub 2016 May 20.
6
7
Plant genome engineering in full bloom.
Trends Plant Sci. 2014 May;19(5):284-7. doi: 10.1016/j.tplants.2014.02.014. Epub 2014 Mar 24.
10
Understanding and Editing the Zebrafish Genome.
Adv Genet. 2015;92:1-52. doi: 10.1016/bs.adgen.2015.09.002. Epub 2015 Nov 12.

引用本文的文献

1
Role of multi-omics in aquaculture genetics and breeding: current status and future perspective.
Sci China Life Sci. 2025 May 28. doi: 10.1007/s11427-024-2828-8.
4
[Not Available].
3 Biotech. 2024 Feb;14(2):44. doi: 10.1007/s13205-023-03891-7. Epub 2024 Jan 18.
5
Consequences of Disturbing Manganese Homeostasis.
Int J Mol Sci. 2023 Oct 6;24(19):14959. doi: 10.3390/ijms241914959.
7
CRISPR/Cas9-mediated generation of biallelic F0 anemonefish (Amphiprion ocellaris) mutants.
PLoS One. 2021 Dec 15;16(12):e0261331. doi: 10.1371/journal.pone.0261331. eCollection 2021.
8
Manganese Accumulation in the Brain via Various Transporters and Its Neurotoxicity Mechanisms.
Molecules. 2020 Dec 12;25(24):5880. doi: 10.3390/molecules25245880.
9
A method for CRISPR/Cas9 mutation of genes in fathead minnow (Pimephales promelas).
Aquat Toxicol. 2020 May;222:105464. doi: 10.1016/j.aquatox.2020.105464. Epub 2020 Mar 2.

本文引用的文献

1
Making designer mutants in model organisms.
Development. 2014 Nov;141(21):4042-54. doi: 10.1242/dev.102186.
3
sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites.
PLoS One. 2014 Jun 23;9(6):e100448. doi: 10.1371/journal.pone.0100448. eCollection 2014.
4
CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences.
Nucleic Acids Res. 2014 Jun;42(11):7473-85. doi: 10.1093/nar/gku402. Epub 2014 May 16.
5
Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease.
Development. 2014 May;141(10):2165-71. doi: 10.1242/dev.105072. Epub 2014 Apr 24.
6
Direct gene disruption by TALENs in medaka embryos.
Gene. 2014 Jun 10;543(1):28-33. doi: 10.1016/j.gene.2014.04.013. Epub 2014 Apr 5.
7
Efficient and heritable gene targeting in tilapia by CRISPR/Cas9.
Genetics. 2014 Jun;197(2):591-9. doi: 10.1534/genetics.114.163667. Epub 2014 Apr 7.
8
A guide to genome engineering with programmable nucleases.
Nat Rev Genet. 2014 May;15(5):321-34. doi: 10.1038/nrg3686. Epub 2014 Apr 2.
9
TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii.
Genetics. 2014 May;197(1):77-89. doi: 10.1534/genetics.113.161091. Epub 2014 Mar 20.
10
Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases.
Genesis. 2014 May;52(5):431-9. doi: 10.1002/dvg.22770. Epub 2014 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验