Suppr超能文献

柔性神经硬件支持视网膜中的动态计算。

Flexible Neural Hardware Supports Dynamic Computations in Retina.

机构信息

Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100, Israel.

Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.

出版信息

Trends Neurosci. 2018 Apr;41(4):224-237. doi: 10.1016/j.tins.2018.01.009. Epub 2018 Feb 14.

Abstract

The ability of the retina to adapt to changes in mean light intensity and contrast is well known. Classically, however, adaptation is thought to affect gain but not to change the visual modality encoded by a given type of retinal neuron. Recent findings reveal unexpected dynamic properties in mouse retinal neurons that challenge this view. Specifically, certain cell types change the visual modality they encode with variations in ambient illumination or following repetitive visual stimulation. These discoveries demonstrate that computations performed by retinal circuits with defined architecture can change with visual input. Moreover, they pose a major challenge for central circuits that must decode properties of the dynamic visual signal from retinal outputs.

摘要

视网膜适应平均光强和对比度变化的能力是众所周知的。然而,经典理论认为,适应会影响增益,但不会改变给定类型的视网膜神经元所编码的视觉模式。最近的发现揭示了小鼠视网膜神经元出人意料的动态特性,这对这一观点提出了挑战。具体来说,某些细胞类型会根据环境光照的变化或重复的视觉刺激而改变它们所编码的视觉模式。这些发现表明,具有特定结构的视网膜电路所执行的计算可以随视觉输入而改变。此外,它们对中枢电路构成了重大挑战,中枢电路必须从视网膜输出中解码动态视觉信号的特性。

相似文献

1
Flexible Neural Hardware Supports Dynamic Computations in Retina.
Trends Neurosci. 2018 Apr;41(4):224-237. doi: 10.1016/j.tins.2018.01.009. Epub 2018 Feb 14.
2
Information processing in the primate retina: circuitry and coding.
Annu Rev Neurosci. 2007;30:1-30. doi: 10.1146/annurev.neuro.30.051606.094252.
3
Neural Mechanisms of Motion Processing in the Mammalian Retina.
Annu Rev Vis Sci. 2018 Sep 15;4:165-192. doi: 10.1146/annurev-vision-091517-034048. Epub 2018 Aug 10.
4
Neural sensitization improves encoding fidelity in the primate retina.
Nat Commun. 2019 Sep 5;10(1):4017. doi: 10.1038/s41467-019-11734-4.
6
Neuronal coupling in rod-signal pathways of the retina.
Invest Ophthalmol Vis Sci. 1997 Feb;38(2):267-73.
7
Retinal development: second sight comes first.
Curr Biol. 2005 Jul 26;15(14):R556-9. doi: 10.1016/j.cub.2005.07.004.
8
Early Visual Motion Experience Improves Retinal Encoding of Motion Directions.
J Neurosci. 2020 Jul 8;40(28):5431-5442. doi: 10.1523/JNEUROSCI.0569-20.2020. Epub 2020 Jun 12.
9
The retinal hypercircuit: a repeating synaptic interactive motif underlying visual function.
J Physiol. 2011 Aug 1;589(Pt 15):3691-702. doi: 10.1113/jphysiol.2011.210617. Epub 2011 Jun 13.
10
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
J Neurosci. 2016 Jul 6;36(27):7184-97. doi: 10.1523/JNEUROSCI.3500-15.2016.

引用本文的文献

1
Short-term plasticity and context-dependent circuit function: Insights from retinal circuitry.
Sci Adv. 2024 Sep 20;10(38):eadp5229. doi: 10.1126/sciadv.adp5229.
2
ON and OFF Signaling Pathways in the Retina and the Visual System.
Front Ophthalmol (Lausanne). 2022;2. doi: 10.3389/fopht.2022.989002. Epub 2022 Aug 26.
3
Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity.
PLoS Comput Biol. 2021 Dec 30;17(12):e1009754. doi: 10.1371/journal.pcbi.1009754. eCollection 2021 Dec.
4
Dopamine D1 and D4 receptors contribute to light adaptation in ON-sustained retinal ganglion cells.
J Neurophysiol. 2021 Dec 1;126(6):2039-2052. doi: 10.1152/jn.00218.2021. Epub 2021 Nov 24.
5
Unraveling neural coding of dynamic natural visual scenes via convolutional recurrent neural networks.
Patterns (N Y). 2021 Sep 17;2(10):100350. doi: 10.1016/j.patter.2021.100350. eCollection 2021 Oct 8.
7
Intraocular Pressure Elevation Compromises Retinal Ganglion Cell Light Adaptation.
Invest Ophthalmol Vis Sci. 2020 Oct 1;61(12):15. doi: 10.1167/iovs.61.12.15.
8
Antagonistic Center-Surround Mechanisms for Direction Selectivity in the Retina.
Cell Rep. 2020 May 5;31(5):107608. doi: 10.1016/j.celrep.2020.107608.
9
Cortical synaptic architecture supports flexible sensory computations.
Curr Opin Neurobiol. 2020 Oct;64:41-45. doi: 10.1016/j.conb.2020.01.013. Epub 2020 Feb 20.
10
Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective.
Genes (Basel). 2019 Nov 29;10(12):987. doi: 10.3390/genes10120987.

本文引用的文献

1
Cellular and Circuit Mechanisms Shaping the Perceptual Properties of the Primate Fovea.
Cell. 2017 Jan 26;168(3):413-426.e12. doi: 10.1016/j.cell.2017.01.005.
2
Connectivity map of bipolar cells and photoreceptors in the mouse retina.
Elife. 2016 Nov 25;5:e20041. doi: 10.7554/eLife.20041.
4
A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina.
Neuron. 2016 Mar 16;89(6):1317-1330. doi: 10.1016/j.neuron.2016.02.020.
5
The functional diversity of retinal ganglion cells in the mouse.
Nature. 2016 Jan 21;529(7586):345-50. doi: 10.1038/nature16468. Epub 2016 Jan 6.
6
Sidekick 2 directs formation of a retinal circuit that detects differential motion.
Nature. 2015 Aug 27;524(7566):466-470. doi: 10.1038/nature14682. Epub 2015 Aug 19.
7
Ambient illumination switches contrast preference of specific retinal processing streams.
J Neurophysiol. 2015 Jul;114(1):540-50. doi: 10.1152/jn.00360.2015. Epub 2015 May 20.
10
Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina.
J Physiol. 2015 Apr 1;593(7):1597-631. doi: 10.1113/jphysiol.2014.284919. Epub 2015 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验