Suppr超能文献

单细胞 RNA 测序指导下的单细胞 RNA FISH 稀有细胞检测。

Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH.

机构信息

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Cell Syst. 2018 Feb 28;6(2):171-179.e5. doi: 10.1016/j.cels.2018.01.014. Epub 2018 Feb 14.

Abstract

Although single-cell RNA sequencing can reliably detect large-scale transcriptional programs, it is unclear whether it accurately captures the behavior of individual genes, especially those that express only in rare cells. Here, we use single-molecule RNA fluorescence in situ hybridization as a gold standard to assess trade-offs in single-cell RNA-sequencing data for detecting rare cell expression variability. We quantified the gene expression distribution for 26 genes that range from ubiquitous to rarely expressed and found that the correspondence between estimates across platforms improved with both transcriptome coverage and increased number of cells analyzed. Further, by characterizing the trade-off between transcriptome coverage and number of cells analyzed, we show that when the number of genes required to answer a given biological question is small, then greater transcriptome coverage is more important than analyzing large numbers of cells. More generally, our report provides guidelines for selecting quality thresholds for single-cell RNA-sequencing experiments aimed at rare cell analyses.

摘要

虽然单细胞 RNA 测序可以可靠地检测大规模转录程序,但尚不清楚它是否能准确捕捉单个基因的行为,尤其是那些仅在稀有细胞中表达的基因。在这里,我们使用单分子 RNA 荧光原位杂交作为金标准,来评估单细胞 RNA 测序数据在检测稀有细胞表达变异性方面的权衡取舍。我们对 26 个基因的基因表达分布进行了量化,这些基因的表达范围从普遍表达到很少表达,结果发现,不同平台之间的估计值的一致性随着转录组覆盖率的增加和分析的细胞数量的增加而提高。此外,通过对转录组覆盖率和分析细胞数量之间的权衡关系进行特征化,我们表明,当回答给定生物学问题所需的基因数量较小时,那么增加转录组覆盖率比分析大量细胞更为重要。更一般地说,我们的报告为旨在进行稀有细胞分析的单细胞 RNA 测序实验选择质量阈值提供了指导。

相似文献

1
Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH.
Cell Syst. 2018 Feb 28;6(2):171-179.e5. doi: 10.1016/j.cels.2018.01.014. Epub 2018 Feb 14.
2
Collection of cells for single-cell RNA sequencing using high-resolution fluorescence microscopy.
STAR Protoc. 2021 Aug 5;2(3):100718. doi: 10.1016/j.xpro.2021.100718. eCollection 2021 Sep 17.
3
Miniaturization of Smart-seq2 for Single-Cell and Single-Nucleus RNA Sequencing.
STAR Protoc. 2020 Sep 18;1(2):100081. doi: 10.1016/j.xpro.2020.100081.
4
Transcriptome Sequencing: RNA-Seq.
Methods Mol Biol. 2018;1754:15-27. doi: 10.1007/978-1-4939-7717-8_2.
5
Rare Cell Type Detection.
Methods Mol Biol. 2019;1935:79-89. doi: 10.1007/978-1-4939-9057-3_5.
6
Review of Single-Cell RNA Sequencing in the Heart.
Int J Mol Sci. 2020 Nov 6;21(21):8345. doi: 10.3390/ijms21218345.
7
Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing.
Methods Mol Biol. 2018;1783:209-241. doi: 10.1007/978-1-4939-7834-2_11.
8
Single-Cell Sequencing of 3' RNA Transcripts.
Methods Mol Biol. 2024;2822:227-243. doi: 10.1007/978-1-0716-3918-4_16.
9
Data Analysis in Single-Cell Transcriptome Sequencing.
Methods Mol Biol. 2018;1754:311-326. doi: 10.1007/978-1-4939-7717-8_18.
10
Effective detection of variation in single-cell transcriptomes using MATQ-seq.
Nat Methods. 2017 Mar;14(3):267-270. doi: 10.1038/nmeth.4145. Epub 2017 Jan 16.

引用本文的文献

2
Mitigating Cell Cycle Effects in Multi-Omics Data: Solutions and Analytical Frameworks.
Adv Sci (Weinh). 2025 Aug;12(29):e05823. doi: 10.1002/advs.202505823. Epub 2025 May 28.
3
Single-cell RNA sequencing algorithms underestimate changes in transcriptional noise compared to single-molecule RNA imaging.
Cell Rep Methods. 2024 Dec 16;4(12):100933. doi: 10.1016/j.crmeth.2024.100933. Epub 2024 Dec 10.
4
Method of moments framework for differential expression analysis of single-cell RNA sequencing data.
Cell. 2024 Oct 31;187(22):6393-6410.e16. doi: 10.1016/j.cell.2024.09.044. Epub 2024 Oct 24.
5
Leveraging gene correlations in single cell transcriptomic data.
BMC Bioinformatics. 2024 Sep 18;25(1):305. doi: 10.1186/s12859-024-05926-z.
6
Answering open questions in biology using spatial genomics and structured methods.
BMC Bioinformatics. 2024 Sep 4;25(1):291. doi: 10.1186/s12859-024-05912-5.
9
Deep learning identifies heterogeneous subpopulations in breast cancer cell lines.
bioRxiv. 2024 Jul 4:2024.07.02.601576. doi: 10.1101/2024.07.02.601576.
10
Gene choice in cancer cells is exclusive in ion transport but concurrent in DNA replication.
Comput Struct Biotechnol J. 2024 Jun 10;23:2534-2547. doi: 10.1016/j.csbj.2024.06.004. eCollection 2024 Dec.

本文引用的文献

1
SAVER: gene expression recovery for single-cell RNA sequencing.
Nat Methods. 2018 Jul;15(7):539-542. doi: 10.1038/s41592-018-0033-z. Epub 2018 Jun 25.
2
Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance.
Nature. 2017 Jun 15;546(7658):431-435. doi: 10.1038/nature22794. Epub 2017 Jun 7.
3
Comparative Analysis of Single-Cell RNA Sequencing Methods.
Mol Cell. 2017 Feb 16;65(4):631-643.e4. doi: 10.1016/j.molcel.2017.01.023.
4
Assessing characteristics of RNA amplification methods for single cell RNA sequencing.
BMC Genomics. 2016 Nov 24;17(1):966. doi: 10.1186/s12864-016-3300-3.
5
GiniClust: detecting rare cell types from single-cell gene expression data with Gini index.
Genome Biol. 2016 Jul 1;17(1):144. doi: 10.1186/s13059-016-1010-4.
6
What's Luck Got to Do with It: Single Cells, Multiple Fates, and Biological Nondeterminism.
Mol Cell. 2016 Jun 2;62(5):788-802. doi: 10.1016/j.molcel.2016.05.023.
8
Single-cell differences in matrix gene expression do not predict matrix deposition.
Nat Commun. 2016 Mar 3;7:10865. doi: 10.1038/ncomms10865.
9
Control of Transcript Variability in Single Mammalian Cells.
Cell. 2015 Dec 17;163(7):1596-610. doi: 10.1016/j.cell.2015.11.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验